Solveeit Logo

Question

Question: Differentiate the following function with respect to x. \(\left( 1+{{x}^{2}} \right)\cos x.\)...

Differentiate the following function with respect to x.
(1+x2)cosx.\left( 1+{{x}^{2}} \right)\cos x.

Explanation

Solution

Hint: when we have to differentiate product of two continuous functions we useddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxg(x)\dfrac{d}{dx}\left[ f(x)g(x) \right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}g(x)

Complete step-by-step answer:
Now let us assume here f(x)=1+x2f(x)=1+{{x}^{2}} and g(x)=cosxg(x)=\cos x
So we can writeddx[(1+x2)cosx]=(1+x2)ddx(cosx)+cosxddx(1+x2) ddx[(1+x2)cosx]=(1+x2)(sinx)+cosx(0+2x) \begin{aligned} & \Rightarrow \dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=(1+{{x}^{2}})\dfrac{d}{dx}(\cos x)+\cos x\dfrac{d}{dx}(1+{{x}^{2}}) \\\ & \Rightarrow \dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=(1+{{x}^{2}})(-\sin x)+\cos x(0+2x) \\\ \end{aligned}
As we know that
ddxcosx=sinx d(constant)dx=0 dxndx=nxn1 ddx[f(x)+g(x)]=ddx[f(x)]+ddx[g(x)] \begin{aligned} & \dfrac{d}{dx}\cos x=-\sin x \\\ & \dfrac{d(cons\tan t)}{dx}=0 \\\ & \dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}} \\\ & \dfrac{d}{dx}\left[ f(x)+g(x) \right]=\dfrac{d}{dx}\left[ f(x) \right]+\dfrac{d}{dx}\left[ g(x) \right] \\\ \end{aligned}
So we can write
ddx[(1+x2)cosx]=sinxx2sinx+2xcosx\dfrac{d}{dx}\left[ (1+{{x}^{2}})\cos x \right]=-\sin x-{{x}^{2}}\sin x+2x\cos x

Note: Here we can take g(x)=(1+x2)g(x)=(1+{{x}^{2}}) andf(x)=cosx,f(x)=\cos x, the result will be the same. Order is not important when we differentiate the product of two continuous functions.