Solveeit Logo

Question

Question: Differentiate the following function with respect to x \({x^{ - 4}}(3 - 4{x^{ - 5}})\)...

Differentiate the following function with respect to x
x4(34x5){x^{ - 4}}(3 - 4{x^{ - 5}})

Explanation

Solution

Hint: Here, the given problem can be solved by simplifying the given function first
and then applying the suitable formulae of differentiation.
Given,
x4(34x5)(1){x^{ - 4}}(3 - 4{x^{ - 5}}) \to (1)
Let us simply the equation (1), we get
3x44x9(2)3{x^{ - 4}} - 4{x^{ - 9}} \to (2)
Now, we need to find the differentiation of equation (2) with respect to x i.e..,
ddx(3x44x9) ddx(3x4)ddx(4x9) 3ddx(x4)4ddx(x9) \begin{gathered} \Rightarrow \frac{d}{{dx}}(3{x^{ - 4}} - 4{x^{ - 9}}) \\\ \Rightarrow \frac{d}{{dx}}(3{x^{ - 4}}) - \frac{d}{{dx}}(4{x^{ - 9}}) \\\ \Rightarrow 3\frac{d}{{dx}}({x^{ - 4}}) - 4\frac{d}{{dx}}({x^{ - 9}}) \\\ \end{gathered}
As we know thatddx(xn)=n.xn1\frac{d}{{dx}}({x^n}) = n.{x^{n - 1}}.So applying the formulae, we get
(3(4)x41)(4(9)x91) 12x5+36x10 \begin{gathered} \Rightarrow (3( - 4){x^{ - 4 - 1}}) - (4( - 9){x^{ - 9 - 1}}) \\\ \Rightarrow - 12{x^{ - 5}} + 36{x^{ - 10}} \\\ \end{gathered}
Thereforeddx(x4(34x5))=12x5+36x10\frac{d}{{dx}}({x^{ - 4}}(3 - 4{x^{ - 5}})) = - 12{x^{ - 5}} + 36{x^{ - 10}}.

Note: The differentiation formula of xn{x^n}i.e.., ddx(xn)=n.xn1\frac{d}{{dx}}({x^n}) = n.{x^{n - 1}}can be
used for any value of n i.e.., it will be applicable even the value of n is positive, negative or
fractional value.