Solveeit Logo

Question

Question: Differentiate the following expressions (i) \[\log \left[ {{a}^{4x}}{{\left( \dfrac{x-5}{x+4} \rig...

Differentiate the following expressions
(i) log[a4x(x5x+4)34]\log \left[ {{a}^{4x}}{{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}} \right]
(ii) log[sin3x.cos4x.(x21)5]\log [{{\sin }^{3}}x.{{\cos }^{4}}x.{{({{x}^{2}}-1)}^{5}}]
(iii) log[x+x2+a2x+x2+a2]\log \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]
(iv) 4log2secx9log3tanx{{4}^{{{\log }_{2}}\sec x}}-{{9}^{{{\log }_{3}}\tan x}}

Explanation

Solution

Hint: We will first use logarithmic rules to first simplify the expressions and then we will differentiate to get the answers. So of the logarithmic rules are log(AB)=logA+logB\log (AB)=\log A+\log B, logxn=nlogx\log {{x}^{n}}=n\log x and log(AB)=logAlogB\log \left( \dfrac{A}{B} \right)=\log A-\log B.

Complete step-by-step solution -
(i) y=log[a4x(x5x+4)34].........(1)y=\log \left[ {{a}^{4x}}{{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}} \right].........(1)
First we will simplify equation (1) by applying the product rule that is log(AB)=logA+logB\log (AB)=\log A+\log B.
y=loga4x+log(x5x+4)34..........(2)y=\log {{a}^{4x}}+\log {{\left( \dfrac{x-5}{x+4} \right)}^{\dfrac{3}{4}}}..........(2)
Now applying logxn=nlogx\log {{x}^{n}}=n\log x rule in equation (2) we get,
y=4xloga+34log(x5x+4)..........(3)y=4x\log a+\dfrac{3}{4}\log \left( \dfrac{x-5}{x+4} \right)..........(3)
Now differentiating both sides of equation (3) we get,
dydx=ddx[4xloga+34log(x5x+4)]..........(4)\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ 4x\log a+\dfrac{3}{4}\log \left( \dfrac{x-5}{x+4} \right) \right]..........(4)
We know that differentiation of a constant is zero and also the differentiation of log(x) is 1x\dfrac{1}{x}. We also know log(AB)=logAlogB\log \left( \dfrac{A}{B} \right)=\log A-\log B. So using these information in equation (4) we get,

& \dfrac{dy}{dx}=\left[ 4\log a\dfrac{d}{dx}(x)+\dfrac{3}{4}\dfrac{d}{dx}[\log \left( x-5 \right)]-\dfrac{3}{4}\dfrac{d}{dx}[\log \left( x+4 \right)] \right] \\\ & \dfrac{dy}{dx}=\left[ 4\log a.1+\dfrac{3}{4}\times \dfrac{1}{x-5}\dfrac{d}{dx}(x-5)-\dfrac{3}{4}\times \dfrac{1}{x+4}\dfrac{d}{dx}(x+4) \right].......(5) \\\ \end{aligned}$$ Now differentiating again in equation (5) we get the final answer, $$\begin{aligned} & \dfrac{dy}{dx}=\left[ 4\log a+\dfrac{3}{4}\times \dfrac{1}{x-5}(1-0)-\dfrac{3}{4}\times \dfrac{1}{x+4}(1+0) \right] \\\ & \dfrac{dy}{dx}=4\log a+\dfrac{3}{4(x-5)}-\dfrac{3}{4(x+4)} \\\ \end{aligned}$$ Hence the answer is $$\dfrac{dy}{dx}=4\log a+\dfrac{3}{4(x-5)}-\dfrac{3}{4(x+4)}$$. (ii) $$y=\log [{{\sin }^{3}}x.{{\cos }^{4}}x.{{({{x}^{2}}-1)}^{5}}].......(1)$$ First we will simplify equation (1) by applying the product rule that is $$\log (ABC)=\log A+\log B+\log C$$. $$y=\log {{\sin }^{3}}x+\log {{\cos }^{4}}x+\log {{({{x}^{2}}-1)}^{5}}.......(2)$$ Now applying $$\log {{x}^{n}}=n\log x$$ rule in equation (2) we get, $$y=3\log \sin x+4\log \cos x+5\log ({{x}^{2}}-1).......(3)$$ Now differentiating both sides of equation (3) we get, $$\dfrac{dy}{dx}=3\dfrac{d}{dx}(\log \sin x)+4\dfrac{d}{dx}(\log \cos x)+5\dfrac{d}{dx}[\log ({{x}^{2}}-1)].......(4)$$ We know that differentiation of a constant is zero and also differentiation of log(x) is $$\dfrac{1}{x}$$. So using this information in equation (4) we get, $$\dfrac{dy}{dx}=3\times \dfrac{1}{\sin x}\dfrac{d}{dx}(\sin x)+4\times \dfrac{1}{\cos x}\dfrac{d}{dx}(\cos x)+5\times \dfrac{1}{{{x}^{2}}-1}\dfrac{d}{dx}[({{x}^{2}}-1)].......(5)$$ Now differentiating again in equation (5) we get the final answer, $$\begin{aligned} & \dfrac{dy}{dx}=3\times \dfrac{1}{\sin x}\times \cos x+4\times \dfrac{1}{\cos x}\times -\sin x+5\times \dfrac{1}{{{x}^{2}}-1}\times 2x \\\ & \dfrac{dy}{dx}=3\cot x-4\tan x+\dfrac{10x}{{{x}^{2}}-1} \\\ \end{aligned}$$ Hence the answer is $$\dfrac{dy}{dx}=3\cot x-4\tan x+\dfrac{10x}{{{x}^{2}}-1}$$. (iii) $$y=\log \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]...........(1)$$ First we will simplify equation (1) by applying the division rule that is $$\log \left( \dfrac{A}{B} \right)=\log A-\log B$$. $$y=\log (x+\sqrt{{{x}^{2}}+{{a}^{2}}})-\log (-x+\sqrt{{{x}^{2}}+{{a}^{2}}})...........(2)$$ Now differentiating both sides of equation (2) we get, $$\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \log (x+\sqrt{{{x}^{2}}+{{a}^{2}}}) \right]-\dfrac{d}{dx}\left[ \log (-x+\sqrt{{{x}^{2}}+{{a}^{2}}}) \right]...........(3)$$ We know that differentiation of a constant is zero and also differentiation of log(x) is $$\dfrac{1}{x}$$. So using this information in equation (3) we get, $$\dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \dfrac{d}{dx}\left[ x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}\left[ -x+\sqrt{{{x}^{2}}+{{a}^{2}}} \right]...........(4)$$ Now differentiating again in equation (4) we get, $$\begin{aligned} & \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\dfrac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}({{x}^{2}}+{{a}^{2}}) \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ -1+\dfrac{1}{2\sqrt{{{x}^{2}}+{{a}^{2}}}}\dfrac{d}{dx}({{x}^{2}}+{{a}^{2}}) \right] \\\ & \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ 1+\dfrac{2x}{2\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]-\dfrac{1}{-x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ -1+\dfrac{2x}{2\sqrt{{{x}^{2}}+{{a}^{2}}}} \right] \\\ & \dfrac{dy}{dx}=\dfrac{1}{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}\times \left[ \dfrac{x+\sqrt{{{x}^{2}}+{{a}^{2}}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right]-\dfrac{1}{-(x-\sqrt{{{x}^{2}}+{{a}^{2}}})}\times \left[ \dfrac{x-\sqrt{{{x}^{2}}+{{a}^{2}}}}{\sqrt{{{x}^{2}}+{{a}^{2}}}} \right].........(5) \\\ & \\\ \end{aligned}$$ Cancelling similar terms from equation (5) we get the final answer, $$\dfrac{dy}{dx}=\dfrac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}+\dfrac{1}{\sqrt{{{x}^{2}}+{{a}^{2}}}}=\dfrac{2}{\sqrt{{{x}^{2}}+{{a}^{2}}}}$$ Hence the answer is $$\dfrac{dy}{dx}=\dfrac{2}{\sqrt{{{x}^{2}}+{{a}^{2}}}}$$. (iv) $$y={{4}^{{{\log }_{2}}\sec x}}-{{9}^{{{\log }_{3}}\tan x}}........(1)$$ 4 can be written as $${{2}^{2}}$$ and 9 can be written as $${{3}^{2}}$$. So using this in equation (1) we get, $$y={{2}^{2{{\log }_{2}}\sec x}}-{{3}^{3{{\log }_{3}}\tan x}}........(2)$$ Now applying $$\log {{x}^{n}}=n\log x$$ rule in equation (2) we get, $$y={{2}^{{{\log }_{2}}{{\sec }^{2}}x}}-{{3}^{{{\log }_{3}}{{\tan }^{2}}x}}........(3)$$ We know that $${{a}^{{{\log }_{a}}x}}=x$$. Now applying this rule in equation (3) we get, $$\begin{aligned} & y={{\sec }^{2}}x-{{\tan }^{2}}x \\\ & y=1......(4) \\\ \end{aligned}$$ Now differentiating equation (4) we get, $$\dfrac{dy}{dx}=0$$. Hence the answer is $$\dfrac{dy}{dx}=0$$. Note: Remembering logarithmic rules and trigonometric identities is the key here. Also we should know the different differentiation formulas. And differentiation of a constant is always zero.