Solveeit Logo

Question

Question: Differentiate the following expression w.r.t. \(x\) \(\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \righ...

Differentiate the following expression w.r.t. xx
x(x3+x23x)\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)
(a) 12x(7x3+5x2+9x)\dfrac{1}{2\sqrt{x}}\left( 7{{x}^{3}}+5{{x}^{2}}+9x \right)
(b) 12x(7x3+5x29x)\dfrac{1}{2\sqrt{x}}\left( 7{{x}^{3}}+5{{x}^{2}}-9x \right)
(c) 12x(7x35x29x)\dfrac{1}{2\sqrt{x}}\left( 7{{x}^{3}}-5{{x}^{2}}-9x \right)
(d) 12x(7x3+5x29x)\dfrac{1}{2\sqrt{x}}\left( -7{{x}^{3}}+5{{x}^{2}}-9x \right)

Explanation

Solution

Hint: Use multiplication rule of differentiation. It is given as
ddx(u.v)=udvdx+vdudx\dfrac{d}{dx}\left( u.v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
Apply this formula to get the differentiation of the equation given. Use the relation
ddxxn=nxn1\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} to get the answer.

Complete step-by-step solution -
As we need to find the differentiation of x(x3+x23x)\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right) . So, let us suppose the given expression is represented by y'y' .So, we get
y=x(x3+x23x)........(i)y=\sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right)........\left( i \right)
As we can observe the equation(i) and get that x\sqrt{x} and x3+x23x{{x}^{3}}+{{x}^{2}}-3x are in multiplication form. So, we can use multiplication rule of differentiation, which is given as
ddx(uv)=udvdx+vdudx..........(ii)\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}..........\left( ii \right)
Now, we can put value of ‘u’ as x\sqrt{x} and ‘v’ as x2+x23x{{x}^{2}}+{{x}^{2}}-3x and use the relation given in equation(i). So, we get
ddx(x(x3+x23x))=dydx=xddx(x3+x23x)+(x3+x23x)ddx(x)\dfrac{d}{dx}\left( \sqrt{x}\left( {{x}^{3}}+{{x}^{2}}-3x \right) \right)=\dfrac{dy}{dx}=\sqrt{x}\dfrac{d}{dx}\left( {{x}^{3}}+{{x}^{2}}-3x \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\dfrac{d}{dx}\left( \sqrt{x} \right)
Now, we know the derivative of xn{{x}^{n}} is given as
ddxxn=nxn1..........(iii)\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}..........\left( iii \right)
Hence, we can get value of dydx\dfrac{dy}{dx} as
dydx=x12[ddxx3+ddxx23ddxx]+(x3+x23x)ddx(x12)\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ \dfrac{d}{dx}{{x}^{3}}+\dfrac{d}{dx}{{x}^{2}}-3\dfrac{d}{dx}x \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\dfrac{d}{dx}\left( {{x}^{\dfrac{1}{2}}} \right)
Now using the relation (iii), we get
dydx=x12[3x2+2x3]+(x3+x23x)×12x12\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{1}{2}{{x}^{-\dfrac{1}{2}}}
dydx=x12[3x2+2x3]+(x3+x23x)×x122\dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{{{x}^{-\dfrac{1}{2}}}}{2}
Now, we know the property of surds given as

& {{a}^{-m}}=\dfrac{1}{{{a}^{m}}}.........\left( iv \right) \\\ & {{a}^{m}}.{{a}^{n}}={{a}^{m+n}}.....\left( v \right) \\\ \end{aligned}$$ Now, we can use above relations and hence get the value of $\dfrac{dy}{dx}$ as $$\begin{aligned} & \dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\left( {{x}^{3}}+{{x}^{2}}-3x \right)\times \dfrac{1}{2{{x}^{\dfrac{1}{2}}}} \\\ & \dfrac{dy}{dx}={{x}^{\dfrac{1}{2}}}\left[ 3{{x}^{2}}+2x-3 \right]+\dfrac{\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\\ & \dfrac{dy}{dx}=\dfrac{2{{x}^{\dfrac{1}{2}}}{{x}^{\dfrac{1}{2}}}\left( 3{{x}^{2}}+2x-3 \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\\ & \\\ & \dfrac{dy}{dx}=\dfrac{2x\left( 3{{x}^{2}}+2x-3 \right)+\left( {{x}^{3}}+{{x}^{2}}-3x \right)}{2{{x}^{\dfrac{1}{2}}}} \\\ & \dfrac{dy}{dx}=\dfrac{6{{x}^{3}}+4{{x}^{2}}-6x+{{x}^{3}}+{{x}^{2}}-3x}{2\sqrt{x}} \\\ & \dfrac{dy}{dx}=\dfrac{7{{x}^{3}}+5{{x}^{2}}-9x}{2\sqrt{x}} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{2}x}\left( 7{{x}^{3}}+5{{x}^{2}}-9x \right) \\\ \end{aligned}$$ Hence, differentiation of the given expression in the problem is given by equation. So, option(b) is the correct answer. Note: Another approach for the given problem would be that we can multiply the term $\sqrt{x}$ to the terms of the bracket. And hence, using $\dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}}$ only, we can solve the problem as well. So, it can be another approach for the question. Calculation is an important side of this problem. Don’t confuse with the calculation part of the problem as well.