Solveeit Logo

Question

Question: Differentiate the following expression \({{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}}...

Differentiate the following expression (x)tanx+(tanx)x{{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}} with respect to xx.

Explanation

Solution

Hint: Assume u=xtanx and v=(tanx)xu={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}} and differentiate the equations with respect to xx by taking log on both sides.

Complete step-by-step answer:
It is given in the question to differentiate the expression,(x)tanx+(tanx)x{{\left( x \right)}^{\tan x}}+{{\left( \tan x \right)}^{x}} with respect to xx.
Let us consider the given expression as,
y=xtanx+(tanx)xy={{x}^{\tan x}}+{{\left( \tan x \right)}^{x}}
Let us assume that u=xtanx and v=(tanx)xu={{x}^{\tan x}}\ and\ v={{\left( \tan x \right)}^{x}} respectively, we get,
y=u+vy=u+v
Now, we have u=xtanxu={{x}^{\tan x}}.
So, taking log on both the sides, we get,
logu=logxtanx\log u=\log {{x}^{\tan x}}
As we know that logab=bloga\log {{a}^{b}}=b\log a, we can write as,
logu=tanx.logx\Rightarrow \log u=\tan x.\log x
Now, differentiating above equation with respect to xx, we get,
ddx(logu)=ddx(tanx.logx)\dfrac{d}{dx}\left( \log u \right)=\dfrac{d}{dx}\left( \tan x.\log x \right)
We can use the chain rule for differentiating the RHS as below,
ddx(logu)=tanxddx(logx)+logxddx(tanx)\dfrac{d}{dx}\left( \log u \right)=\tan x\dfrac{d}{dx}\left( \log x \right)+\log x\dfrac{d}{dx}\left( \tan x \right)
Since, we know that the derivative of logx\log xis 1x\dfrac{1}{x} and tanx\tan x is sec2x{{\sec }^{2}}x, we can write,
1u.dydx=tanx(1x)+logx(sec2x) dydx=u(tanxx+sec2xlogx)..............(1) \begin{aligned} & \Rightarrow \dfrac{1}{u}.\dfrac{dy}{dx}=\tan x\left( \dfrac{1}{x} \right)+\log x\left( {{\sec }^{2}}x \right) \\\ & \Rightarrow \dfrac{dy}{dx}=u\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)..............\left( 1 \right) \\\ \end{aligned}
Now putting the value of uu in equation (1), we get,
dudx=xtanx(tanxx+sec2xlogx)\dfrac{du}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)
Similarly, we have,v=(tanx)xv={{\left( \tan x \right)}^{x}}.
Again, taking log on both the sides, we get,
logv=log(tanx)x\log v=\log {{\left( \tan x \right)}^{x}}
As we know that logab=bloga\log {{a}^{b}}=b\log a, we can write as,
logv=xlog(tanx)\log v=x\log \left( \tan x \right)
Now, we will differentiate the above equation with respect to xx. We can use the chain rule on RHS and the standard derivatives and we get,
1vdvdx=log(tanx).1+x(1tanx.sec2x) dvdx=v(log(tanx)+xsec2xtanx) dvdx=(tanx)x(log(tanx)+xsec2xtanx)............(2) \begin{aligned} & \Rightarrow \dfrac{1}{v}\dfrac{dv}{dx}=\log \left( \tan x \right).1+x\left( \dfrac{1}{\tan x}.{{\sec }^{2}}x \right) \\\ & \Rightarrow \dfrac{dv}{dx}=v\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\\ & \Rightarrow \dfrac{dv}{dx}={{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right)............\left( 2 \right) \\\ \end{aligned}
Therefore, we get,
dydx=dudx+dvdx.............(3)\dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx}.............\left( 3 \right)
Now putting the value of dudx and dvdx\dfrac{du}{dx}\ and\ \dfrac{dv}{dx}in equation (3) we get,
dydx=dudx+dvdx dydx=xtanx(tanxx+sec2xlogx)+(tanx)x(log(tanx)+xsec2xtanx) \begin{aligned} & \dfrac{dy}{dx}=\dfrac{du}{dx}+\dfrac{dv}{dx} \\\ & \dfrac{dy}{dx}={{x}^{\tan x}}\left( \dfrac{\tan x}{x}+{{\sec }^{2}}x\log x \right)+{{\left( \tan x \right)}^{x}}\left( \log \left( \tan x \right)+\dfrac{x{{\sec }^{2}}x}{\tan x} \right) \\\ \end{aligned}

Note: If you don’t assume u=x(tanx) and v=(tanx)xu={{x}^{\left( \tan x \right)}}\ and\ v={{\left( \tan x \right)}^{x}} then the solution will become more complex. And the chances of error while solving it will also increase. Always replace using a small variable in place of the complex part of any equation.