Solveeit Logo

Question

Question: Differentiate tan2x from first principle [a] \({{\sec }^{2}}x\) [b] \({{\sec }^{2}}2x\) [c] \(...

Differentiate tan2x from first principle
[a] sec2x{{\sec }^{2}}x
[b] sec22x{{\sec }^{2}}2x
[c] 1sec22x1-{{\sec }^{2}}2x
[d] 2sec22x2{{\sec }^{2}}2x

Explanation

Solution

- Hint: Use the fact that f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}. Take f(x)= cos2x and write tanx\tan x as sinxcosx\dfrac{\sin x}{\cos x} and hence simplify the expression tan(2x+2h)tan2x\tan \left( 2x+2h \right)-\tan 2x. Use sinAcosBcosAsinB=sin(AB)\sin A\cos B-\cos A\sin B=\sin \left( A-B \right). Use limh0sin(h)h=1\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h}=1. Hence find the value of the limit and hence find the derivative. Verify your answer using the chain rule of differentiation.

Complete step-by-step solution -

We know that f(x)=limh0f(x+h)f(x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}
Taking f(x) = tan2x, we get
f(x)=limh0f(x+h)f(x)h=limh0tan(2(x+h))tan(2x)hf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan \left( 2\left( x+h \right) \right)-\tan \left( 2x \right)}{h}
We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}.
Hence, we have
f(x)=limh0sin(2x+2h)cos(2x+2h)sin2xcos2xhf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\sin \left( 2x+2h \right)}{\cos \left( 2x+2h \right)}-\dfrac{\sin 2x}{\cos 2x}}{h}
Multiplying the numerator and the denominator by cos(2x+2h)cos2x\cos \left( 2x+2h \right)\cos 2x, we get
f(x)=limh0sin(2x+2h)cos2xsin2xcos(2x+2h)hcos2xcos(2x+2h)f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 2x+2h \right)\cos 2x-\sin 2x\cos \left( 2x+2h \right)}{h\cos 2x\cos \left( 2x+2h \right)}
We know that sinAcosB-cosAsinB = sin(A-B)
Put A = 2x+2h and B = 2x, we get
sin(2x+2h)cos2xcos(2x+2h)sin2x=sin(2x+2h2x)=sin2h\sin \left( 2x+2h \right)\cos 2x-\cos \left( 2x+2h \right)\sin 2x=\sin \left( 2x+2h-2x \right)=\sin 2h
Hence, we have
f(x)=limh0sin(2h)hcos2xcos(2x+2h)=limh01cos2xlimh01cos(2x+2h)limh0sin2hhf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( 2h \right)}{h\cos 2x\cos \left( 2x+2h \right)}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos 2x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos \left( 2x+2h \right)}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{h}
We know that limh01cos2x=1cos2x=sec2x\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos 2x}=\dfrac{1}{\cos 2x}=\sec 2x (because x is independent of h) and limh01cos(2x+2h)=1cos(2x+0)=sec2x\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{\cos \left( 2x+2h \right)}=\dfrac{1}{\cos \left( 2x+0 \right)}=\sec 2x (because cos2x0\cos 2x\ne 0 in the domain of tan2x).
Also, we have limh0sin2h2h=1\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{2h}=1
Multiplying both sides by 2, we get
limh0sin2hh=2\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin 2h}{h}=2
Hence, we have f(x)=sec2x×sec2x×2=2sec22xf'\left( x \right)=\sec 2x\times \sec 2x\times 2=2{{\sec }^{2}}2x
Hence the derivative of tan2x is 2sec22x2{{\sec }^{2}}2x
Hence option [d] is correct.

Note: [1] Verification using chain rule:
We know that ddx(fog(x))=dd(g(x))f(g(x))ddxg(x)\dfrac{d}{dx}\left( fog\left( x \right) \right)=\dfrac{d}{d\left( g\left( x \right) \right)}f\left( g\left( x \right) \right)\dfrac{d}{dx}g\left( x \right)
Taking f(x) = tanx and g(x) = 2x, we have fog(x) = tan2x.
Now, we have ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x
Hence, we have dd(g(x))tan(g(x))=sec2(g(x))dd(2x)tan(2x)=sec22x\dfrac{d}{d\left( g\left( x \right) \right)}\tan \left( g\left( x \right) \right)={{\sec }^{2}}\left( g\left( x \right) \right)\Rightarrow \dfrac{d}{d\left( 2x \right)}\tan \left( 2x \right)={{\sec }^{2}}2x
We know that ddx2x=2ddxx=2\dfrac{d}{dx}2x=2\dfrac{d}{dx}x=2
Hence, we have
ddxtan(2x)=sec22x(2)=2sec22x\dfrac{d}{dx}\tan \left( 2x \right)={{\sec }^{2}}2x\left( 2 \right)=2{{\sec }^{2}}2x, which is the same as obtained above.
[2] You can also solve the above question using tan(2x+2h)=tan2x+tan2h1tan2xtan2h\tan \left( 2x+2h \right)=\dfrac{\tan 2x+\tan 2h}{1-\tan 2x\tan 2h} and then simplifying and using limh0tan(h)h=1\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan \left( h \right)}{h}=1 as shown below:
We have f(x)=limh0tan2x+tan2h1tan2xtan2htan2xhf'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{\tan 2x+\tan 2h}{1-\tan 2x\tan 2h}-\tan 2x}{h}
Hence, we have
f(x)=limh0tan2x+tan2htan2x+tan22xtan2hh(1tan2xtan2h) =limh0tan2hh(1+tan22x)limh011tan2xtan2h =2sec22x \begin{aligned} & f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan 2x+\tan 2h-\tan 2x+{{\tan }^{2}}2x\tan 2h}{h\left( 1-\tan 2x\tan 2h \right)} \\\ & =\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\tan 2h}{h}\left( 1+{{\tan }^{2}}2x \right)\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{1-\tan 2x\tan 2h} \\\ & =2{{\sec }^{2}}2x \\\ \end{aligned}
Which is the same as obtained above.