Solveeit Logo

Question

Question: Differentiate \( {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right) \) with respect t...

Differentiate tan1(1+x21x){\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right) with respect to sin1(2x1+x2){\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) , when x0x \ne 0.

Explanation

Solution

Hint : In this differentiation problem we first let one function as ‘u’ and other as ‘v’ and then simplify the angle of inverse trigonometric functions given by using suitable substitution. After simplification of both, divide their differentiation result to obtain the required solution of the problem.

Formula used:

sec2θtan2θ=1, {\sec ^2}\theta - {\tan ^2}\theta = 1,\,\,\,\,\,

sin2θ=2tanθ1+tan2θ,\sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }},\,\,

tanθ=sinθcosθ,\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},\,\,\,

secθ=1cosθ,\sec \theta = \dfrac{1}{{\cos \theta }},\,\,

ddx(tan1x)=11+x2,1cosθ=2sin2(θ2)\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right) = \dfrac{1}{{1 + {x^2}}},\,\,1 - \cos \theta = 2{\sin ^2}\left( {\dfrac{\theta}{2}} \right)\,\,\,

\sin \theta = 2.\sin \left( {\dfrac{\theta}{2}} \right)\\\cos \left( {\dfrac{\theta}{2}} \right)\

**

**
**

Complete step by step solution:**

Suppose

u=tan11+x21xu = \dfrac{{{{\tan }^{ - 1}}\sqrt {1 + {x^2}} - 1}}{x}

We know that for an inverse trigonometric function having 1+x2\sqrt {1 + {x^2}} term suitable substitution is x=tanθx = \tan \theta .

Therefore taking x=tanθx = \tan \theta in above we have,

u=tan1(1+tan2θ1tanθ)u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {{\tan }^2}\theta } - 1}}{{\tan \theta }}} \right)

u=tan1(sec2θ1tanθ)\Rightarrow u = {\tan ^{ - 1}}\left( {\dfrac{{\sqrt {{{\sec }^2}\theta } - 1}}{{\tan \theta }}} \right)

\,\,\,\,\,\,\,\,\,\,\,\,\left\\{ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right\\}

u=tan1(secθ1tanθ)\Rightarrow u = {\tan ^{ - 1}}\left( {\dfrac{{\sec \theta - 1}}{{\tan \theta }}} \right)

Writing secθandtanθintobasictrigonometricfunctions\sec \theta \,\,and\,\,\tan \theta \,\,\operatorname{int} o\,\,basic\,\,trigonometric\,\,functions

u = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{\cos \theta }} - 1}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \left\\{ {\sec \theta = \dfrac{1}{{\cos \theta }}and\,\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}} \right\\}

Taking L.C.M. we have,

u=tan1(1cosθcosθsinθcosθ)u = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{1 - \cos \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}}} \right)

or

u=tan1(1cosθsinθ)u = {\tan ^{ - 1}}\left( {\dfrac{{1 - \cos \theta }}{{\sin \theta }}} \right)

Now, using half angle of identities of trigonometric functions 1cosθ=2sin2(θ2),andsinθ=2.sin(θ2)cos(θ2)1 - \cos \theta = 2{\sin ^2}\left( \dfrac{\theta }{2} \right),\,\,and\,\,\sin \theta = 2.\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right) we have

u=tan1(2sin2(θ2)2.sin(θ2)cos(θ2))u = {\tan ^{ - 1}}\left( {\dfrac{{2{{\sin }^2}\left( \dfrac{\theta }{2} \right)}}{{2.\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)}}} \right)

u=tan1(sin(θ2)cos(θ2))u = {\tan ^{ - 1}}\left( {\dfrac{{\sin \left( \dfrac{\theta }{2} \right)}}{{\cos \left( \dfrac{\theta }{2} \right)}}} \right)

u = {\tan ^{ - 1}}\left\\{ {\tan \left( \dfrac{\theta }{2} \right)} \right\\}

u = \dfrac{\theta }{2},\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\\{ {\because {{\tan }^{ - 1}}\left( {\tan \theta } \right) = \theta } \right\\}

From substitution x=tanθwehaveθ=tan1xx = \tan \theta \,\,\,we\,\,have\,\,\theta = {\tan ^{ - 1}}x . Using this in above we have

u=tan1x2u = \dfrac{{{{\tan }^{ - 1}}x}}{2} or

u=12tan1xu = \dfrac{1}{2}{\tan ^{ - 1}}x

Now, differentiating ‘u’ w.r.t. to x we have

dudx=12ddx(tan1x)\dfrac{{du}}{{dx}} = \dfrac{1}{2}\dfrac{d}{{dx}}\left( {{{\tan }^{ - 1}}x} \right)

dudx=12(11+x2)\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 + {x^2}}}} \right)

\left\\{ {\because \dfrac{d}{{dx}}{{\tan }^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}} \right\\}

Or

dudx=12(11+x2).......................(i)\dfrac{{du}}{{dx}} = \dfrac{1}{2}\left( {\dfrac{1}{{1 + {x^2}}}} \right).......................(i)

Now, considering v = sin1(2x1+x2){\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)

Taking, x = tanθ\tan \theta in above and simplifying it we have,

v=sin1(2tanθ1+tan2θ)v = {\sin ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right)

\Rightarrow v = {\sin ^{ - 1}}\left( {\sin 2\theta } \right) ,\,\,\,\,\,\,\,\,\,\,\,\left\\{ {\because \sin 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right\\}

v = 2\theta ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left\\{ {\because {{\sin }^{ - 1}}\left( {\sin \theta } \right) = \theta } \right\\}

From substitution x=tanθwehaveθ=tan1xx = \tan \theta \,\,we\,\,have\,\,\theta = {\tan ^{ - 1}}x . Using this in above we have

v=2tan1xv = 2{\tan ^{ - 1}}x

Now, differentiating ‘v’ w.r.t. x we have,

dvdx=ddθ(2tan1x)\dfrac{{dv}}{{dx}} = \dfrac{d}{{d\theta }}(2{\tan ^{ - 1}}x)

dvdx=2ddθ(tan1x)\Rightarrow \dfrac{{dv}}{{dx}} = 2\dfrac{d}{{d\theta }}({\tan ^{ - 1}}x)

\Rightarrow \dfrac{{dv}}{{dx}} = 2\left( {\dfrac{1}{{1 + {x^2}}}} \right),\,\,\,\,\,\,\,\,\left\\{ {{{\tan }^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}} \right\\}

or

dvdx=21+x2........................(ii)\dfrac{{dv}}{{dx}} = \dfrac{2}{{1 + {x^2}}}........................(ii)

Now, dividing equation (i) by equation (ii) we have

(dudθ)(dvdθ)=12(11+x2)2(11+x2)\dfrac{{\left( {\dfrac{{du}}{{d\theta }}} \right)}}{{\left( {\dfrac{{dv}}{{d\theta }}} \right)}} = \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{{1 + {x^2}}}} \right)}}{{2\left( {\dfrac{1}{{1 + {x^2}}}} \right)}}

dudv=14\Rightarrow \dfrac{{du}}{{dv}} = \dfrac{1}{4}

Therefore, from above we see that derivative of ‘u’ w.r.t. ‘v’ is 14\dfrac{1}{4} .

Hence, we can say that derivative of tan1(1+x21x){\tan ^{ - 1}}\left( {\dfrac{{\sqrt {1 + {x^2}} - 1}}{x}} \right) w.r.t. sin1(2x1+x2){\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) is 14\dfrac{1}{4} .

So, the correct answer is “ 14\dfrac{1}{4} ”.

Note : For inverses trigonometric functions we first see that if angles of the given functions are not in simplified form then we must use suitable substitution to convert given angle of trigonometric function in lowest form of simplified form and only then differentiate them otherwise calculating ends with wrong answer.