Solveeit Logo

Question

Question: Differentiate \({\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right)\) with r...

Differentiate tan1(sinxcosxsinx+cosx){\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right) with respect to x2\dfrac{x}{2} ?

Explanation

Solution

Hint : In this question, first we have to make an identity of tan(AB)\tan \left( {A - B} \right) with the trigonometric functions written in tan inverse. Then we have to differentiate it with respect to x2\dfrac{x}{2}.
Which we can do by differentiating both tan1(sinxcosxsinx+cosx){\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right) and x2\dfrac{x}{2} with respect to x.

Complete step-by-step answer :
In the given question, we have tan1(sinxcosxsinx+cosx){\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right).
Now,
tan1(sinxcosxsinx+cosx)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right)
Now divide with cosx\cos x in both numerator and denominator.
tan1(sinxcosx1sinxcosx+1)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{\sin x}}{{\cos x}} - 1}}{{\dfrac{{\sin x}}{{\cos x}} + 1}}} \right)
We know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
tan1(tanx1tanx+1)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\tan x - 1}}{{\tan x + 1}}} \right)
As we know that tanπ4=1\tan \dfrac{\pi }{4} = 1
tan1(tanxtanπ41+tanxtanπ4)\Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\tan x - \tan \dfrac{\pi }{4}}}{{1 + \tan x\tan \dfrac{\pi }{4}}}} \right)
There is an identity in trigonometry as tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}.
On applying it,
tan1(tan(xπ4))\Rightarrow {\tan ^{ - 1}}\left( {\tan \left( {x - \dfrac{\pi }{4}} \right)} \right)
Now taking inverse of given function.
xπ4\Rightarrow x - \dfrac{\pi }{4}
Therefore, we can say that xπ4=tan1(sinxcosxsinx+cosx)x - \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right)
Now differentiate the above value with respect to x.
d(xπ4)dx=dxdxd(π4)dx=10=1\Rightarrow \dfrac{{d\left( {x - \dfrac{\pi }{4}} \right)}}{{dx}} = \dfrac{{dx}}{{dx}} - \dfrac{{d\left( {\dfrac{\pi }{4}} \right)}}{{dx}} = 1 - 0 = 1
d(xπ4)dx=1(1)\Rightarrow \dfrac{{d\left( {x - \dfrac{\pi }{4}} \right)}}{{dx}} = 1 - - - - \left( 1 \right)
We know that differentiation of a constant value with respect to x is zero.
Now differentiate x2\dfrac{x}{2} with respect to x.
d(x2)dx=12(2)\Rightarrow \dfrac{{d\left( {\dfrac{x}{2}} \right)}}{{dx}} = \dfrac{1}{2} - - - - \left( 2 \right)
Now divide equation (1)and(2)\left( 1 \right)\,and\,\left( 2 \right)
d(xπ4)dxd(x2)dx=112\Rightarrow \dfrac{{\dfrac{{d\left( {x - \dfrac{\pi }{4}} \right)}}{{dx}}}}{{\dfrac{{d\left( {\dfrac{x}{2}} \right)}}{{dx}}}} = \dfrac{1}{{\dfrac{1}{2}}}
d(xπ4)d(x2)=2\Rightarrow \dfrac{{d\left( {x - \dfrac{\pi }{4}} \right)}}{{d\left( {\dfrac{x}{2}} \right)}} = 2
Now substitute the value xπ4=tan1(sinxcosxsinx+cosx)x - \dfrac{\pi }{4} = {\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right)
d(tan1(sinxcosxsinx+cosx))d(x2)=2\Rightarrow \dfrac{{d\left( {{{\tan }^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right)} \right)}}{{d\left( {\dfrac{x}{2}} \right)}} = 2
Therefore, the differentiation of tan1(sinxcosxsinx+cosx){\tan ^{ - 1}}\left( {\dfrac{{\sin x - \cos x}}{{\sin x + \cos x}}} \right) with respect to x2\dfrac{x}{2} is 22 .
So, the correct answer is “2”.

Note : Differentiation is one of the two important concepts apart from integration. Differentiation is a method of finding the derivative of function. Differentiation is a process, in Maths, where we find the instantaneous rate of change in function based on one of its variables. The most common example is the rate change of displacement with respect to time, called velocity. The opposite of finding a derivative is anti-differentiation.
If x is a variable and y is another variable, then the rate of change of x with respect to y is given by dydx\dfrac{{dy}}{{dx}}. This is the general expression of derivative of a function and is represented as f(x) = dydxf'\left( x \right){\text{ }} = {\text{ }}\dfrac{{dy}}{{dx}}, where y = f(x)y{\text{ }} = {\text{ }}f\left( x \right) is any function.