Solveeit Logo

Question

Question: Differentiate \[{{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right)\] with respect to \[\sqrt{1+4{{x}^{2...

Differentiate tan1(1+2x12x){{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right) with respect to 1+4x2\sqrt{1+4{{x}^{2}}}.

Explanation

Solution

Hint: We use the Quotient rule for Derivative of a functionf(x)f(x) with respect to another function g(x)g(x) is given as d(f(x))d(g(x))=d(f(x))dx÷d(g(x))dx\dfrac{d\left( f\left( x \right) \right)}{d\left( g\left( x \right) \right)}=\dfrac{d(f(x))}{dx}\div \dfrac{d\left( g\left( x \right) \right)}{dx}.

Complete step by step answer:
Here, we are asked to differentiate a function, say f(x)=tan1(1+2x12x)f\left( x \right)={{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right) with respect to g(x)=1+4x2g\left( x \right)=\sqrt{1+4{{x}^{2}}}.
i.e. we need to determine d(f(x))d(g(x))\dfrac{d\left( f\left( x \right) \right)}{d\left( g\left( x \right) \right)}.
We know, d(f(x))d(g(x))=ddxf(x)×dxd(g(x))...........\dfrac{d\left( f\left( x \right) \right)}{d\left( g\left( x \right) \right)}=\dfrac{d}{dx}f(x)\times \dfrac{dx}{d(g(x))}...........equation(1)(1)
Now, first we will find the value of the derivative of f(x)f\left( x \right).
We are given f(x)=tan1(1+2x12x)f\left( x \right)={{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right)
So, ddxf(x)=ddxtan1(1+2x12x)\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}{{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right)
We can see that f(x)f(x) is a composite function , i.e it is of the type f(x)=h(p(x))f(x)=h(p(x)) , where h(x)=tan1(x)h(x)={{\tan }^{-1}}(x) and p(x)=1+2x12xp(x)=\dfrac{1+2x}{1-2x} . So , the derivative of f(x)f(x) is given as f(x)=h(p(x))×p(x)f'(x)=h'(p(x))\times p'(x)
Now , we know, ddx(tan1(x))=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( x \right) \right)=\dfrac{1}{1+{{x}^{2}}}
So, ddx(tan1(1+2x12x))=11+(1+2x12x)2.ddx(1+2x12x)........\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right) \right)=\dfrac{1}{1+{{\left( \dfrac{1+2x}{1-2x} \right)}^{2}}}.\dfrac{d}{dx}\left( \dfrac{1+2x}{1-2x} \right)........equation(2)(2)
Now, first we will determine the value of the derivative of 1+2x12x\dfrac{1+2x}{1-2x}.
To find the value of the derivative of 1+2x12x\dfrac{1+2x}{1-2x}, we need to apply quotient rule. The quotient rule of differentiation is given as ddx(uv)=vuuvv2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v{{u}^{'}}-u{{v}^{'}}}{{{v}^{2}}}.
Now , applying quotient rule to find the derivative , we get ,
ddx(1+2x12x)=(12x).2(2).(1+2x)(12x)2\dfrac{d}{dx}\left( \dfrac{1+2x}{1-2x} \right)=\dfrac{\left( 1-2x \right).2-\left( -2 \right).\left( 1+2x \right)}{{{\left( 1-2x \right)}^{2}}}
=24x+2+4x(12x)2=\dfrac{2-4x+2+4x}{{{\left( 1-2x \right)}^{2}}}
=4(12x)2=\dfrac{4}{{{\left( 1-2x \right)}^{2}}}
Now , we will substitute the value of ddx(1+2x12x)\dfrac{d}{dx}\left( \dfrac{1+2x}{1-2x} \right) in equation(2)(2).
On substituting the value of ddx(1+2x12x)\dfrac{d}{dx}\left( \dfrac{1+2x}{1-2x} \right) in equation(2)(2), we get ddx(tan1(1+2x12x))=11+(1+2x12x)2.4(12x)2\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right) \right)=\dfrac{1}{1+{{\left( \dfrac{1+2x}{1-2x} \right)}^{2}}}.\dfrac{4}{{{\left( 1-2x \right)}^{2}}}
=1(12x)2+(1+2x)2(12x)2.4(12x)2=\dfrac{1}{\dfrac{{{\left( 1-2x \right)}^{2}}+{{\left( 1+2x \right)}^{2}}}{{{\left( 1-2x \right)}^{2}}}}.\dfrac{4}{{{\left( 1-2x \right)}^{2}}}
=(12x)2(12x)2+(1+2x)2.4(12x)2=\dfrac{{{\left(1-2x\right)}^{2}}}{{{\left(1-2x\right)}^{2}}+{{\left(1+2x \right)}^{2}}}.\dfrac{4}{{{\left( 1-2x \right)}^{2}}}

=21+4x2=\dfrac{2}{1+4{{x}^{2}}}
So , ddxf(x)=21+4x2\dfrac{d}{dx}f(x)=\dfrac{2}{1+4{{x}^{2}}}
Now , we will find the derivative ofg(x)=1+4x2g(x)=\sqrt{1+4{{x}^{2}}}
.
So, ddxg(x)=ddx1+4x2\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\sqrt{1+4{{x}^{2}}}
Again g(x)g(x) is a composite function. So,
ddxg(x)=121+4x2.ddx(1+4x2)\dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{1+4{{x}^{2}}}}.\dfrac{d}{dx}(1+4{{x}^{2}})
=4x1+4x2=\dfrac{4x}{\sqrt{1+4{{x}^{2}}}}
Now, Now , we know inverse function theorem of differentiation says that if we are given g(x)g(x) and ddxg(x)=g(x)\dfrac{d}{dx}g(x)=g'(x) then , dxd(g(x))=1g(x)\dfrac{dx}{d(g(x))}=\dfrac{1}{g'(x)} .
So, dxd(g(x))=1g(x)=14x1+4x2=1+4x24x\dfrac{dx}{d(g(x))}=\dfrac{1}{g'(x)}=\dfrac{1}{\dfrac{4x}{\sqrt{1+4{{x}^{2}}}}}=\dfrac{\sqrt{1+4{{x}^{2}}}}{4x}

Now, the derivative of tan1(1+2x12x){{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right) with respect to 1+4x2\sqrt{1+4{{x}^{2}}}can be calculated by substituting the values of derivative of ddxf(x)\dfrac{d}{dx}f(x) and dxd(g(x))\dfrac{dx}{d(g(x))} in equation(1)(1).
dtan1(1+2x12x)d(1+4x2)=21+4x2×1+4x24x\dfrac{d{{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right)}{d\left( \sqrt{1+4{{x}^{2}}} \right)}=\dfrac{2}{1+4{{x}^{2}}}\times \dfrac{\sqrt{1+4{{x}^{2}}}}{4x}
=12x1+4x2=\dfrac{1}{2x\sqrt{1+4{{x}^{2}}}}
Hence , the derivative of tan1(1+2x12x){{\tan }^{-1}}\left( \dfrac{1+2x}{1-2x} \right) with respect to 1+4x2\sqrt{1+4{{x}^{2}}} is given as 12x1+4x2\dfrac{1}{2x\sqrt{1+4{{x}^{2}}}}
Note: While differentiating 1+4x2\sqrt{1+4{{x}^{2}}}with respect to xx, most students make a mistake of writing ddx(1+4x2)=121+4x2\dfrac{d}{dx}\left( \sqrt{1+4{{x}^{2}}} \right)=\dfrac{1}{2\sqrt{1+4{{x}^{2}}}} which is wrong.
ddx1+4x2\dfrac{d}{dx}\sqrt{1+4{{x}^{2}}} =121+4x2×8x=\dfrac{1}{2\sqrt{1+4{{x}^{2}}}}\times 8x. Such mistakes should be avoided as students can end up getting a wrong answer due to such mistakes.