Solveeit Logo

Question

Question: Differentiate \[{\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }}\] with respect to \[{\sin ^{ - 1}}\lef...

Differentiate tan1x1x2{\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }} with respect to sin1(2x1x2){\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right) .

Explanation

Solution

We have to find the derivative of the given trigonometric function tan1x1x2{\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }} with respect to another trigonometric function sin1(2x1x2){\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right) . We solve this question using the concept of differentiation of trigonometric functions and the various formulas for the inverse of trigonometric functions . We solve this question by substituting the value of the given function . First we will substitute the value of angle of both the trigonometric functions such that we get a simplified form of the trigonometric functions . Then we will differentiate the expression of both the functions with respect to xx . And finally we will divide the derivative of the tangent function by the derivative of the sine function to get the required answer of the derivative .

Complete step-by-step solution:
Given :
We have to differentiate tan1x1x2{\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }} with respect to sin1(2x1x2){\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)
Let u=tan1x1x2u = {\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }} and v=sin1(2x1x2)v = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)
Now , we have to find dudv\dfrac{{du}}{{dv}} .
For the value of dudv\dfrac{{du}}{{dv}} , we will differentiate both uu and vv separately with respect to xx .
Now , we will solve the value of the derivative in two cases: one for uu and second for vv .
Case 1 :Case{\text{ }}1{\text{ }}:
u=tan1x1x2u = {\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }}
Put x=sinax = \sin a
Also , a=sin1xa = {\sin ^{ - 1}}x
Substituting the values , we get
u=tan1sina1sin2au = {\tan ^{ - 1}}\dfrac{{\sin a}}{{\sqrt {1 - {{\sin }^2}a} }}
We also know that the relation of sine and cosine function is given as :
sin2x+cos2x=1{sin^2}x + {cos^2}x = 1
cos2x=1sin2x{cos^2}x = 1 - {sin^2}x
Using the above expression , we get the value of uu as :
u=tan1sinacosau = {\tan ^{ - 1}}\dfrac{{\sin a}}{{\cos a}}
We also know that :
tanu=sinacosa\tan u = \dfrac{{\sin a}}{{\cos a}}
So , the expression of uu becomes :
u=tan1(tana)u = {\tan ^{ - 1}}\left( {\tan a} \right)
Now , all know that :
tan1(tana)=a{\tan ^{ - 1}}\left( {\tan a} \right) = a , a(π2,π2)a \in \left( {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right)
Using the relation , we get value of uu as :
u=au = a
Now substituting the value of a back , we get the expression as :
u=sin1xu = {\sin ^{ - 1}}x
We also , know that the derivative of sin1x=11x2{\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}
Using the formula , we get the value of dudx\dfrac{{du}}{{dx}} as :
Differentiating uu with respect to xx , we get
dudx=11x2(1)\dfrac{{du}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }} - - - \left( 1 \right)
Case 2 :Case{\text{ }}2{\text{ }}:
v=sin1(2x1x2)v = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)
Put x=sinbx = \sin b
Also , b=sin1xb = {\sin ^{ - 1}}x
Substituting the values , we get
v=sin1(2sinb1sin2b)v = {\sin ^{ - 1}}\left( {2\sin b\sqrt {1 - {{\sin }^2}b} } \right)
We also know that the relation of sine and cosine function is given as :
sin2x+cos2x=1{sin^2}x + {cos^2}x = 1
cos2x=1sin2x{cos^2}x = 1 - {sin^2}x
Using the above expression , we get the value of vv as :
v=sin1(2sinbcosb)v = {\sin ^{ - 1}}\left( {2\sin b\cos b} \right)
We also know that the formula of double angle of sine function is given as :
sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
So , the expression of vv becomes :
v=sin1(sin2b)v = {\sin ^{ - 1}}\left( {\sin 2b} \right)
Now , all know that :
sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x , x[π2,π2]x \in \left[ {\dfrac{{ - \pi }}{2},\dfrac{\pi }{2}} \right]
Using the relation , we get value of vv as :
v=2bv = 2b
Now substituting the value of b back , we get the expression as :
v=2sin1xv = 2{\sin ^{ - 1}}x
We also , know that the derivative of sin1x=11x2{\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}
Using the formula , we get the value of dvdx\dfrac{{dv}}{{dx}} as :
Differentiating vv with respect to xx , we get
dvdx=21x2(2)\dfrac{{dv}}{{dx}} = \dfrac{2}{{\sqrt {1 - {x^2}} }} - - - \left( 2 \right)
Now , dividing the two equations , we get the value of dudv\dfrac{{du}}{{dv}} as :
dudv=(dudx)(dvdx)\dfrac{{du}}{{dv}} = \dfrac{{\left( {\dfrac{{du}}{{dx}}} \right)}}{{\left( {\dfrac{{dv}}{{dx}}} \right)}}
dudv=(11x2)(21x2)\dfrac{{du}}{{dv}} = \dfrac{{\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right)}}{{\left( {\dfrac{2}{{\sqrt {1 - {x^2}} }}} \right)}}
Cancelling the terms , we get
dudv=12\dfrac{{du}}{{dv}} = \dfrac{1}{2}
Hence , the value of the differentiate tan1x1x2{\tan ^{ - 1}}\dfrac{x}{{\sqrt {1 - {x^2}} }} with respect to sin1(2x1x2){\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right) is 12\dfrac{1}{2} .

Note: We used the concept of the range of the inverse of trigonometric functions . The range of the trigonometric function is stated as the value of the intervals between which all the values of the trigonometric function lie .
Various inverse trigonometric functions are given as :
sin1(x)=sin1x{\sin ^{ - 1}}\left( { - x} \right) = - {\sin ^{ - 1}}x , x[1,1]x \in \left[ { - 1,1} \right]
cos1(x)=πcos1x{\cos ^{ - 1}}\left( { - x} \right) = \pi - {\cos ^{ - 1}}x , x[1,1]x \in \left[ { - 1,1} \right]
tan1(x)=tan1(x){\tan ^{ - 1}}\left( { - x} \right) = - {\tan ^{ - 1}}\left( x \right) , xRx \in R