Solveeit Logo

Question

Question: Differentiate \({{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}\) with respect to x....

Differentiate tan11+x21x{{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x} with respect to x.

Explanation

Solution

We are going to use more than one substitution here. First we need to substitute x=tanθx=\tan \theta and simplify the differential as much as possible. We are going to use trigonometric ratios and formulas for sum of angles for sine and cosine as calculation requires.

Complete step by step answer:
Let us assume x=tanθx=\tan \theta where θ\theta is any real number except π2+nπ\dfrac{\pi }{2}+n\pi where nn is an integer.
Now we shall substitute $x=\tan \theta $ in the given differential. Let us assume $y={{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}={{\tan }^{-1}}\dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta }$

Using the trigonometric formula sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1
y={{\tan }^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}-1}{x}={{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right)={{\tan }^{-1}}\dfrac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta }={{\tan }^{-1}}\left( \dfrac{\sec \theta -1}{\tan \theta } \right)$$$$$ Now we substitute the trigonometric ratio \sec \theta =\dfrac{1}{\cos \theta }andand\tan \theta =\dfrac{\sin \theta }{\cos \theta },, y={{\tan }^{-1}}\dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }}={{\tan }^{-1}}\dfrac{1-\cos \theta }{\sin \theta }$$$$ We know from trigonometric formula that\cos (A+B)=\cos A\cos B-\sin A\sin Bandand\sin \left( A+B \right)=\sin A\cos B+\cos A\sin BwherewhereAandandBareangles.Wesubstituteare angles. We substituteA=B=\theta in the above cosine sum of angles formulas $$$$ \begin{aligned}
& \cos (\theta +\theta )=\cos \theta \cos \theta -\sin \theta \sin \theta ={{\cos }^{2}}\theta -{{\sin }^{2}}\theta \\
& \Rightarrow \cos (2\theta )={{\cos }^{2}}\theta -{{\sin }^{2}}\theta =1-{{\sin }^{2}}\theta -{{\sin }^{2}}\theta =1-2{{\sin }^{2}}\theta \\
& \Rightarrow 2{{\sin }^{2}}\theta =1-\cos 2\theta \\
\end{aligned}$$$$ Replacing\theta withwith\dfrac{\theta }{2}wegetwe get2{{\sin }^{2}}\theta =1-\cos \dfrac{\theta }{2} Similarly we substitute $A=B=\theta $ in the above sine sum of angles formulas, $\begin{aligned} & \sin \left( \theta +\theta \right)=\sin \theta \cos \theta +\cos \theta \sin \theta =2\sin \theta \cos \theta \\\ & \Rightarrow \sin 2\theta =2\sin \theta \cos \theta \\\ \end{aligned}
Replacing θ\theta with θ2\dfrac{\theta }{2} we get sinθ=2sinθ2cosθ2\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} $$$$
Using the trigonometric obtained above formula 1cosθ=2sin2(θ2) 1-\cos \theta =2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right) and sinθ=2sin(θ2)cos(θ2)\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right),y=tan1(1cosθsinθ)=tan1(2sin2(θ2)sinθ=2sin(θ2)cos(θ2))=tan1(tanθ2)=θ2y={{\tan }^{-1}}\left( \dfrac{1-\cos \theta }{\sin \theta } \right)={{\tan }^{-1}}\left( \dfrac{2{{\sin }^{2}}\left( \dfrac{\theta }{2} \right)}{\sin \theta =2\sin \left( \dfrac{\theta }{2} \right)\cos \left( \dfrac{\theta }{2} \right)} \right)={{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right)=\dfrac{\theta }{2}
Replacing θ\theta in the above result,
y=θ2=tan1x2y=\dfrac{\theta }{2}=\dfrac{{{\tan }^{-1}}x}{2}
Differentiating above with respect to xx both side,
dydx=ddx(tan1x2)=12ddx(tan1x)=12(1+x2)\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{{{\tan }^{-1}}x}{2} \right)=\dfrac{1}{2}\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{2\left( 1+{{x}^{2}} \right)}

The obtained value of the derivative is 12(1+x2)\dfrac{1}{2\left( 1+{{x}^{2}} \right)}.

Note: Please note that the question is ambiguous about the value of xx in asked derivative because if x=0x=0 we cannot differentiate. We need to take care of the domain and range of the function (in this casetanx\tan x) during the calculation of inverse functions because sometimes the inverse for certain values may not even exist. In this case we have discarded the value π2+nπ\dfrac{\pi }{2}+n\pi for any tanx\tan x from further calculation as at those values tanx\tan x is not defined.