Solveeit Logo

Question

Question: Differentiate \[\sqrt {\tan x} \] with respect to \(x\). a) \[\dfrac{{{{\sec }^2}x}}{{2\sqrt {\tan...

Differentiate tanx\sqrt {\tan x} with respect to xx.
a) sec2x2tanx\dfrac{{{{\sec }^2}x}}{{2\sqrt {\tan x} }}
b) sec2x2tanx\dfrac{{ - {{\sec }^2}x}}{{2\sqrt {\tan x} }}
c) csc2x2tanx\dfrac{{{{\csc }^2}x}}{{2\sqrt {\tan x} }}
d) csc2x2tanx\dfrac{{ - {{\csc }^2}x}}{{2\sqrt {\tan x} }}

Explanation

Solution

Hint : We need to differentiate tanx\sqrt {\tan x} , which can be written as (tanx)12{(\tan x)^{\dfrac{1}{2}}}. We will use the chain rule to differentiate the given function. Chain rule is applied on the composite functions. We will consider two functions ff and gg. Then, we will write the given function as a composition of these two functions. Chain Rule for differentiation of composite function can be defined as:
ddx(fog(x))=f(g(x))×g(x)\dfrac{d}{{dx}}\left( {fog(x)} \right) = f'(g(x)) \times g'(x) , where ddx(g(x))=g(x)\dfrac{d}{{dx}}(g(x)) = g'(x).

Complete step by step solution:
We need to differentiate tanx\sqrt {\tan x} .
tanx\sqrt {\tan x} can be written as (tanx)12{(\tan x)^{\dfrac{1}{2}}}
Considering, f(x)=x12f(x) = {x^{\dfrac{1}{2}}} and g(x)=tanxg(x) = \tan x, we get
fog(x)=f(g(x))=(g(x))12=(tanx)12fog(x) = f(g(x)) = {(g(x))^{\dfrac{1}{2}}} = {(\tan x)^{\dfrac{1}{2}}} as g(x)=tanxg(x) = \tan x
Using Chain Rule in the for the above function, we get
ddx((tanx)12)=ddx(fog(x))=f(g(x))×g(x)\dfrac{d}{{dx}}\left( {{{(\tan x)}^{\dfrac{1}{2}}}} \right) = \dfrac{d}{{dx}}\left( {fog(x)} \right) = f'(g(x)) \times g'(x), whereddx(g(x))=g(x)\dfrac{d}{{dx}}(g(x)) = g'(x) ----(1)
Now, we have
f(x)=ddx(f(x))=ddx(x12)f'(x) = \dfrac{d}{{dx}}\left( {f(x)} \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{1}{2}}}} \right)
As we know, (ddx(xn)=nxn1)\left( {\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}} \right). So,
f(x)=12(x121)f'(x) = \dfrac{1}{2}\left( {{x^{\dfrac{1}{2} - 1}}} \right)
Taking LCM of the powers of xx.
f(x)=12(x122)f'(x) = \dfrac{1}{2}\left( {{x^{\dfrac{{1 - 2}}{2}}}} \right)
f(x)=12(x12)f'(x) = \dfrac{1}{2}\left( {{x^{ - \dfrac{1}{2}}}} \right)
As we have to find f(g(x))f'(g(x)), we will replace xx by g(x)g(x) in the above equation. Hence,
f(g(x))=12((g(x))12)f'(g(x)) = \dfrac{1}{2}\left( {{{(g(x))}^{ - \dfrac{1}{2}}}} \right)
Now, Substituting the value of i.e. g(x)=tanxg(x) = \tan x
f(g(x))=12((tanx)12)f'(g(x)) = \dfrac{1}{2}\left( {{{(\tan x)}^{ - \dfrac{1}{2}}}} \right)
Using the properties of exponential power, we know (xn=1xn)\left( {{x^{ - n}} = \dfrac{1}{{{x^n}}}} \right). Hence the above equation becomes
f(g(x))=12(1(tanx)12)f'(g(x)) = \dfrac{1}{2}\left( {\dfrac{1}{{{{(\tan x)}^{\dfrac{1}{2}}}}}} \right)
We know, (x12=x)\left( {{x^{\dfrac{1}{2}}} = \sqrt x } \right). Hence, using this, we get
f(g(x))=12(1tanx)f'(g(x)) = \dfrac{1}{2}\left( {\dfrac{1}{{\sqrt {\tan x} }}} \right) -----(2)
Differentiating g(x)g(x) with respect to xx
ddx(g(x))=g(x)=ddx(tanx)\dfrac{d}{{dx}}(g(x)) = g'(x) = \dfrac{d}{{dx}}\left( {\tan x} \right)
We know the differentiation formula for tanx\tan x i.e. (ddx(tanx)=sec2x)\left( {\dfrac{d}{{dx}}\left( {\tan x} \right) = {{\sec }^2}x} \right)
g(x)=sec2xg'(x) = {\sec ^2}x ---(3)
Using (2) and (3) in (1), we get
ddx(tanx)=ddx((tanx)12)=12(1tanx)×sec2x\dfrac{d}{{dx}}\left( {\sqrt {\tan x} } \right) = \dfrac{d}{{dx}}\left( {{{(\tan x)}^{\dfrac{1}{2}}}} \right) = \dfrac{1}{2}\left( {\dfrac{1}{{\sqrt {\tan x} }}} \right) \times {\sec ^2}x
ddx(tanx)=12×1tanx×sec2x\dfrac{d}{{dx}}\left( {\sqrt {\tan x} } \right) = \dfrac{1}{2} \times \dfrac{1}{{\sqrt {\tan x} }} \times {\sec ^2}x
ddx(tanx)=sec2x2tanx\dfrac{d}{{dx}}\left( {\sqrt {\tan x} } \right) = \dfrac{{{{\sec }^2}x}}{{2\sqrt {\tan x} }}
\therefore Differentiating tanx\sqrt {\tan x} with respect to xx we get sec2x2tanx\dfrac{{{{\sec }^2}x}}{{2\sqrt {\tan x} }}.
\therefore The correct option is (a).

Note : We need to be very careful when we are applying the chain rule and when we decide two functions for a composite function. Composition of functions needs to be done with full presence of mind. Also, we need to remember the formulas for differentiation of functions thoroughly. While we are applying chain rule, we need to be very careful with the first term of the right hand side i.e. f(g(x))f'(g(x)). We have to differentiate the function f(x)f(x) with respect to xx and then replace xx by g(x)g(x) after obtaining the value of f(x)f'(x). We don’t have to Differentiate g(x)g(x) in this step.