Solveeit Logo

Question

Mathematics Question on Differentiability

Differentiate sin(sin2x).\sin \,\,(\sin \,\,2x).

A

2cos2x.cos2x2\,\cos \,2x.\,\cos \,2x

B

2cos2x.cos(sin2x)2\,\cos \,2x.\,\cos \,(\sin \,2x)

C

2cos2x.sin2x2\,\cos \,2x.\sin 2x

D

cos2x.cos(sin2x)\cos \,2x.\cos \,(\sin 2x)

Answer

2cos2x.cos(sin2x)2\,\cos \,2x.\,\cos \,(\sin \,2x)

Explanation

Solution

Let y=sin(sin2x)y=\sin (\sin \,2x) Then, dydx=ddx[sin(sin2x)]\frac{dy}{dx}=\frac{d}{dx}\,\,[\sin \,(\sin 2x)]
=cos(sin2x).cos2x.2=\cos (\sin 2x).\cos \,2x.2 dydx=2cos2x.cos(sin2x)\frac{dy}{dx}=2\cos \,2x.\cos (\sin 2x)