Solveeit Logo

Question

Question: Differentiate.\[{\sin ^2}\left( {\ln \,x} \right)\]....

Differentiate.sin2(lnx){\sin ^2}\left( {\ln \,x} \right).

Explanation

Solution

We will suppose the given value(y=sin2(lnx))\left( {y = {{\sin }^2}\left( {\ln \,x} \right)} \right). Differentiate the given value with respect to x.
ddxlogx=1x\dfrac{d}{{dx}}\log x = \dfrac{1}{x}

Complete step by step solution:-
Let y=sin2(lnx)y = {\sin ^2}\left( {\ln x} \right)
Differentiate both side with respect to x, we will get

ddxy=ddxsin2(logx) ddxy=2sin(logx)ddxsin(logx) dydx=2sin(logx)cos(logx)ddx(logx) dydx=2sinx(logx)cosx(logx)1xddxx dydx=2sinx(logx)cosx(logx)1x×1 dydx=2sinx(logx)cosx(logx)1x dydx=2sinx(logx)cosx(logx)x  \dfrac{d}{{dx}}y = \dfrac{d}{{dx}}{\sin ^2}\left( {\log x} \right) \\\ \dfrac{d}{{dx}}y = 2\sin \left( {\log x} \right)\dfrac{d}{{dx}}\sin \left( {\log x} \right) \\\ \dfrac{{dy}}{{dx}} = 2\sin \left( {\log x} \right)\cos \left( {\log x} \right)\dfrac{d}{{dx}}\left( {\log x} \right) \\\ \dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x}\dfrac{d}{{dx}}x \\\ \dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x} \times 1 \\\ \dfrac{{dy}}{{dx}} = 2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)\dfrac{1}{x} \\\ \dfrac{{dy}}{{dx}} = \dfrac{{2\sin x\left( {\log x} \right)\cos x\left( {\log x} \right)}}{x} \\\

Additional information: Differentiation is a process of finding a function that outputs the rate of change of one variable with respect to another variable. Some differentiation rule are:
(i) The constant rule: for any fixed real number cc.\dfrac{d}{{dx}}\left\\{ {c.f(x)} \right\\} = c.\dfrac{d}{{dx}}\left\\{ {f(x)} \right\\}
(ii) The power rule: \dfrac{d}{{dx}}\left\\{ {{x^n}} \right\\} = n{x^{n - 1}}

Note: Students should follow product rule [f(x)g(x)]\left[ {f\left( x \right)g\left( x \right)} \right] when we differentiate this value with respect to x then
ddx[f(x)g(x)] =g(n)ddx[f(x)]+f(x)ddx[g(x)]  \dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] \\\ = g\left( n \right)\dfrac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\dfrac{d}{{dx}}\left[ {g\left( x \right)} \right] \\\
DO not differentiate directly.