Solveeit Logo

Question

Question: Differentiate \(\sec x\) by using first principle....

Differentiate secx\sec x by using first principle.

Explanation

Solution

Hint- According to the first principle of differentiation, If we differentiate a function f(x) so the differentiation f’(x) represents the value of slope of a tangent on a curve. We use formula of differentiation f(x)=ddx(f(x))=limh0f(x+h)f(x)hf'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}.

Complete step-by-step solution -
Now, we have to differentiate secx\sec x by using first principle.
Let f(x)=secxf\left( x \right) = \sec x
First principal of differentiation,
f(x)=ddx(f(x))=limh0f(x+h)f(x)hf'\left( x \right) = \dfrac{d}{{dx}}\left( {f\left( x \right)} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f(x)}}{h}
Now, f(x)=secxf\left( x \right) = \sec x and f(x+h)=sec(x+h)f\left( {x + h} \right) = \sec \left( {x + h} \right)
Put the value of f(x) and f(x+h)

ddx(secx)=limh0sec(x+h)secxh ddx(secx)=limh0(1h(1cos(x+h)1cosx)) ddx(secx)=limh0(1h(cosxcos(x+h)cosx.cos(x+h)))  \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sec \left( {x + h} \right) - \sec x}}{h} \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos x}}} \right)} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{\cos x - \cos \left( {x + h} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\\

Now using trigonometric identity, cosAcosB=2sin(A+B2)sin(BA2)\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)

ddx(secx)=limh0(1h(2sin(2x+h2)sin(x+hx2)cosx.cos(x+h))) ddx(secx)=limh0(1h(2sin(x+h2)sin(h2)cosx.cos(x+h)))   \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{{x + h - x}}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{1}{h}\left( {\dfrac{{2\sin \left( {x + \dfrac{h}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right)} \right) \\\ \\\

Now, we use limxaf(a)×g(a)=limxaf(a)×limxag(a)\mathop {\lim }\limits_{x \to a} f\left( a \right) \times g\left( a \right) = \mathop {\lim }\limits_{x \to a} f\left( a \right) \times \mathop {\lim }\limits_{x \to a} g\left( a \right) where limxaf(a)\mathop {\lim }\limits_{x \to a} f\left( a \right) give finite value.
ddx(secx)=limh0(sin(x+h2)cosx.cos(x+h))×limh0(sin(h2)h2)\Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right)
We know, limx0(sinxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1

ddx(secx)=limh0(sin(x+h2)cosx.cos(x+h))×1 ddx(secx)=(sin(x)cosx.cosx) ddx(secx)=secx.tanx  \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \left( {x + \dfrac{h}{2}} \right)}}{{\cos x.\cos \left( {x + h} \right)}}} \right) \times 1 \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \left( {\dfrac{{\sin \left( x \right)}}{{\cos x.\cos x}}} \right) \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x.\tan x \\\

So, the differentiation of secx\sec x by using the first principle is secx.tanx\sec x.\tan x.

Note-In such types of questions we generally face problems to solve limits so we use some important points. First we use the trigonometric identities to convert cosine into sine form because we know the most useful identity of limit is limx0(sinxx)=1\mathop {\lim }\limits_{x \to 0} \left( {\dfrac{{\sin x}}{x}} \right) = 1 . So, after using this property we will get the required answer.