Solveeit Logo

Question

Question: Differentiate \({\log _x}e\) with respect to \(x\)...

Differentiate logxe{\log _x}e with respect to xx

Explanation

Solution

We can use the property of logarithm that, logab=lnblna{\log _a}b = \dfrac{{\ln b}}{{\ln a}} to simplify the given expression logxe{\log _x}e. We can then differentiate the expression using chain differentiation rules.

Complete step by step solution:
It is known the property of logarithm functions, that logab=lnblna{\log _a}b = \dfrac{{\ln b}}{{\ln a}}.
Substituting the value xx for aa and ee for bb in the equationlogab=lnblna{\log _a}b = \dfrac{{\ln b}}{{\ln a}} to simplify the expression logxe{\log _x}e.
logxe=lnelnx{\log _x}e = \dfrac{{\ln e}}{{\ln x}}
The value of lne\ln e is equal to 1.
Thus substituting the value 1 for lne\ln e in the equation logxe=lnelnx{\log _x}e = \dfrac{{\ln e}}{{\ln x}}.
logxe=1lnx{\log _x}e = \dfrac{1}{{\ln x}}
Differentiating the expression 1lnx\dfrac{1}{{\ln x}} with respect to xx.
d((lnx)1)dx\dfrac{{d\left( {{{\left( {\ln x} \right)}^{ - 1}}} \right)}}{{dx}}
The chain rule of differentiation states that d(f(g(x)))dx=f(x)d(g(x))dx\dfrac{{d\left( {f\left( {g\left( x \right)} \right)} \right)}}{{dx}} = f'\left( x \right)\dfrac{{d\left( {g\left( x \right)} \right)}}{{dx}}.
The differentiation formula for the expression xn{x^n}is dxndx=nxn1\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}.
Similarly the differentiation of logx\log x with respect to xx is 1x\dfrac{1}{x}.
Simplifying the above expression, we get
d((lnx)1)dx=1(lnx)2(d(lnx)dx)\dfrac{{d\left( {{{\left( {\ln x} \right)}^{ - 1}}} \right)}}{{dx}} = - 1{\left( {\ln x} \right)^{ - 2}}\left( {\dfrac{{d\left( {\ln x} \right)}}{{dx}}} \right)
=1(lnx)21x= - 1{\left( {\ln x} \right)^{ - 2}}\dfrac{1}{x}
The expression 1(lnx)21x - 1{\left( {\ln x} \right)^{ - 2}}\dfrac{1}{x} can be rewritten as
=1xln2x= - \dfrac{1}{{x{{\ln }^2}x}}
Thus the differentiation of logxe{\log _x}e with respect to xx is 1xln2x - \dfrac{1}{{x{{\ln }^2}x}}.

Note: Students can alternatively use quotient rule of differentiation to calculate the derivate of logxe=1lnx{\log _x}e = \dfrac{1}{{\ln x}} where quotient rules states that, ddx(f(x)g(x))=g(x)f(x)f(x)g(x)(g(x))2\dfrac{d}{{dx}}\left( {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right) = \dfrac{{g\left( x \right)f'\left( x \right) - f\left( x \right)g'\left( x \right)}}{{{{\left( {g\left( x \right)} \right)}^2}}}
Then,
ddx(logxe)=ddx(1lnx) lnxddx(1)1ddx(lnx)(lnx)2  \dfrac{d}{{dx}}\left( {{{\log }_x}e} \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{\ln x}}} \right) \\\ \Rightarrow \dfrac{{\ln x\dfrac{d}{{dx}}\left( 1 \right) - 1\dfrac{d}{{dx}}\left( {\ln x} \right)}}{{{{\left( {\ln x} \right)}^2}}} \\\
After applying the formula of differentiation, we will get,
1(1x)ln2x 1xln2x  \dfrac{{ - 1\left( {\dfrac{1}{x}} \right)}}{{{{\ln }^2}x}} \\\ \Rightarrow - \dfrac{1}{{x{{\ln }^2}x}} \\\