Solveeit Logo

Question

Question: Differentiate \[{\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}\] with respect to \[x\]....

Differentiate (logx)x+(x)logx{\left( {\log x} \right)^x} + {\left( x \right)^{\log x}} with respect to xx.

Explanation

Solution

Here, we need to find the derivative of the given function with respect to xx. We will first assume the given function, and the individual terms to be three distinct variables. Then we will form an equation using the given function and variable. Then we will use the formula of differentiation to differentiate the equation. Then we will substitute the function and terms in place of variables to get the required answer.

Formula Used:
We will use the following formulas:
1.If x=yx = y, then logx=logy\log x = \log y.
2.The rule of logarithms logxn=nlogx\log {x^n} = n\log x.
3.The derivative of a function of the form log[f(x)]\log \left[ {f\left( x \right)} \right] is 1f(x)×d[f(x)]dx\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
4.The derivative of xx with respect to xx is 1.
5.The derivative of a function of the form [f(x)]n{\left[ {f\left( x \right)} \right]^n} is n[f(x)]n1×d[f(x)]dxn{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
6.The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is d[f(x)+g(x)]dx=d[f(x)]dx+d[g(x)]dx\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}.

Complete step-by-step answer:
Let y=(logx)x+(x)logxy = {\left( {\log x} \right)^x} + {\left( x \right)^{\log x}}, u=(logx)xu = {\left( {\log x} \right)^x}, and v=(x)logxv = {\left( x \right)^{\log x}}.
Thus, we get
y=u+vy = u + v
We need to find d[(logx)x+(x)logx]dx\dfrac{{d\left[ {{{\left( {\log x} \right)}^x} + {{\left( x \right)}^{\log x}}} \right]}}{{dx}}, that is dydx\dfrac{{dy}}{{dx}}.
We will differentiate the equations u=(logx)xu = {\left( {\log x} \right)^x} and v=(x)logxv = {\left( x \right)^{\log x}}.
First, we will rewrite and differentiate both sides of u=(logx)xu = {\left( {\log x} \right)^x} with respect to xx.
We know that if x=yx = y, then logx=logy\log x = \log y.
Thus, taking logarithms of both sides, we get
logu=log[(logx)x]\Rightarrow \log u = \log \left[ {{{\left( {\log x} \right)}^x}} \right]
Applying the rule of logarithms logxn=nlogx\log {x^n} = n\log x, we get
logu=log[x(logx)] logu=xlog(logx)\begin{array}{l} \Rightarrow \log u = \log \left[ {x\left( {\log x} \right)} \right]\\\ \Rightarrow \log u = x\log \left( {\log x} \right)\end{array}
Differentiating both sides with respect to xx using the product rule of differentiation, we get
d[logu]dx=d[xlog(logx)]dx d[logu]dx=xd[log(logx)]dx+d[x]dxlog(logx)\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\log u} \right]}}{{dx}} = \dfrac{{d\left[ {x\log \left( {\log x} \right)} \right]}}{{dx}}\\\ \Rightarrow \dfrac{{d\left[ {\log u} \right]}}{{dx}} = x\dfrac{{d\left[ {\log \left( {\log x} \right)} \right]}}{{dx}} + \dfrac{{d\left[ x \right]}}{{dx}}\log \left( {\log x} \right)\end{array}
The derivative of a function of the form log[f(x)]\log \left[ {f\left( x \right)} \right] is 1f(x)×d[f(x)]dx\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
The derivate of xx with respect to xx is 1.
Therefore, we get
1u×dudx=x[1logx×d(logx)dx]+1×log(logx) 1u×dudx=x[1logx×1x]+log(logx)\begin{array}{l} \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = x\left[ {\dfrac{1}{{\log x}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}} \right] + 1 \times \log \left( {\log x} \right)\\\ \Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = x\left[ {\dfrac{1}{{\log x}} \times \dfrac{1}{x}} \right] + \log \left( {\log x} \right)\end{array}
Simplifying the expression, we get
1u×dudx=1logx+log(logx)\Rightarrow \dfrac{1}{u} \times \dfrac{{du}}{{dx}} = \dfrac{1}{{\log x}} + \log \left( {\log x} \right)
Multiplying both sides of the equation by uu, we get
dudx=u[1logx+log(logx)]\Rightarrow \dfrac{{du}}{{dx}} = u\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]
Substituting u=(logx)xu = {\left( {\log x} \right)^x} in the equation, we get
dudx=(logx)x[1logx+log(logx)]\Rightarrow \dfrac{{du}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right]
Now, we will rewrite and differentiate both sides of v=(x)logxv = {\left( x \right)^{\log x}} with respect to xx.
We know that if x=yx = y, then logx=logy\log x = \log y.
Thus, taking logarithms of both sides, we get
logv=log[xlogx]\Rightarrow \log v = \log \left[ {{x^{\log x}}} \right]
Applying the rule of logarithms logxn=nlogx\log {x^n} = n\log x, we get
logv=logx(logx) logv=(logx)2\begin{array}{l} \Rightarrow \log v = \log x\left( {\log x} \right)\\\ \Rightarrow \log v = {\left( {\log x} \right)^2}\end{array}
Differentiating both sides of the equation with respect to xx, we get
d[logv]dx=d[(logx)2]dx\Rightarrow \dfrac{{d\left[ {\log v} \right]}}{{dx}} = \dfrac{{d\left[ {{{\left( {\log x} \right)}^2}} \right]}}{{dx}}
The derivative of a function of the form [f(x)]n{\left[ {f\left( x \right)} \right]^n} is n[f(x)]n1×d[f(x)]dxn{\left[ {f\left( x \right)} \right]^{n - 1}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
The derivative of a function of the form log[f(x)]\log \left[ {f\left( x \right)} \right] is 1f(x)×d[f(x)]dx\dfrac{1}{{f\left( x \right)}} \times \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}}.
Therefore, we get
1v×dvdx=2(logx)21×d(logx)dx 1v×dvdx=2(logx)1×1x\begin{array}{l} \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = 2{\left( {\log x} \right)^{2 - 1}} \times \dfrac{{d\left( {\log x} \right)}}{{dx}}\\\ \Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = 2{\left( {\log x} \right)^1} \times \dfrac{1}{x}\end{array}
Simplifying the expression, we get
1v×dvdx=2logxx\Rightarrow \dfrac{1}{v} \times \dfrac{{dv}}{{dx}} = \dfrac{{2\log x}}{x}
Multiplying both sides of the equation by vv, we get
dvdx=v[2logxx]\Rightarrow \dfrac{{dv}}{{dx}} = v\left[ {\dfrac{{2\log x}}{x}} \right]
Substituting v=(x)logxv = {\left( x \right)^{\log x}} in the equation, we get
dvdx=(x)logx[2logxx]\Rightarrow \dfrac{{dv}}{{dx}} = {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]
Now, we will find the value of d[(logx)x+(x)logx]dx\dfrac{{d\left[ {{{\left( {\log x} \right)}^x} + {{\left( x \right)}^{\log x}}} \right]}}{{dx}}, that is dydx\dfrac{{dy}}{{dx}}.
Differentiating both sides of the equation y=u+vy = u + v with respect to xx, we get
dydx=d(u+v)dx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left( {u + v} \right)}}{{dx}}
The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is d[f(x)+g(x)]dx=d[f(x)]dx+d[g(x)]dx\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}.
Therefore, the equation becomes
dydx=dudx+dvdx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}} + \dfrac{{dv}}{{dx}}
Substituting dudx=(logx)x[1logx+log(logx)]\dfrac{{du}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] and dvdx=(x)logx[2logxx]\dfrac{{dv}}{{dx}} = {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right] in the equation, we get
dydx=(logx)x[1logx+log(logx)]+(x)logx[2logxx]\Rightarrow \dfrac{{dy}}{{dx}} = {\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] + {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right]
Therefore, we get the derivative of the function (logx)x+(x)logx{\left( {\log x} \right)^x} + {\left( x \right)^{\log x}} as (logx)x[1logx+log(logx)]+(x)logx[2logxx]{\left( {\log x} \right)^x}\left[ {\dfrac{1}{{\log x}} + \log \left( {\log x} \right)} \right] + {\left( x \right)^{\log x}}\left[ {\dfrac{{2\log x}}{x}} \right].

Note: We differentiated the expression xlog(logx)x\log \left( {\log x} \right) using the product rule of differentiation. Differentiation is used to find the derivative of a function.The product rule of differentiation states that the derivative of the product of two functions is given as d(uv)dx=ud(v)dx+d(u)dxv\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + \dfrac{{d\left( u \right)}}{{dx}}v. In the expression xlog(logx)x\log \left( {\log x} \right), the two functions are xx and log(logx)\log \left( {\log x} \right).