Solveeit Logo

Question

Question: Differentiate from the first principle the derivative of \[\ln \left( x \right)?\]...

Differentiate from the first principle the derivative of ln(x)?\ln \left( x \right)?

Explanation

Solution

Here we have to find the derivative of a function using the first principle of differentiation. According to the first principle of differentiation, if we differentiate a function f(x)f\left( x \right) so the differentiation f(x){f'}\left( x \right) represents the slope of a tangent on a curve. The formula is given as: f(x)=limh0f(x+h)f(x)h{f'}\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} . So, use this concept to get the solution of the given problem.

Complete step by step answer:
The given function is ln(x)\ln \left( x \right)
So let f(x)=ln(x) (1)f\left( x \right) = \ln \left( x \right){\text{ }} - - - \left( 1 \right)
Now we have to find the derivative of ln(x)\ln \left( x \right) using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated using the formulas as:
f(x)=limh0f(x+h)f(x)h{f'}\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}
So, on differentiating equation (1)\left( 1 \right) using the formula of first principle we get
ddxln(x)=limh0f(x+h)ln(x)h (2)\dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - \ln \left( x \right)}}{h}{\text{ }} - - - \left( 2 \right)
For finding f(x+h)f\left( {x + h} \right) replace xx by x+hx + h in the given function
Therefore, we get
f(x+h)=ln(x+h)f\left( {x + h} \right) = \ln \left( {x + h} \right)
On substituting in the equation (2)\left( 2 \right) we get
ddxln(x)=limh0ln(x+h)ln(x)h (3)\dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\ln \left( {x + h} \right) - \ln \left( x \right)}}{h}{\text{ }} - - - \left( 3 \right)
Now we know that
loga(xy)=logaxlogay{\log _a}\left( {\dfrac{x}{y}} \right) = {\log _a}x - {\log _a}y
Therefore, from equation (3)\left( 3 \right) we have
ddxln(x)=limh0ln(x+hx)h\dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\ln \left( {\dfrac{{x + h}}{x}} \right)}}{h}
ddxln(x)=limh0ln(xx+hx)h\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\ln \left( {\dfrac{x}{x} + \dfrac{h}{x}} \right)}}{h}
Now multiply and divide by xx in the denominator, we have
ddxln(x)=limh0ln(xx+hx)hxx\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\ln \left( {\dfrac{x}{x} + \dfrac{h}{x}} \right)}}{{h \cdot \dfrac{x}{x}}}
ddxln(x)=limh0ln(xx+hx)hxx\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\ln \left( {\dfrac{x}{x} + \dfrac{h}{x}} \right)}}{{\dfrac{h}{x} \cdot x}}
Solving numerator term, we get
ddxln(x)=limh0ln(1+hx)hxx\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\ln \left( {1 + \dfrac{h}{x}} \right)}}{{\dfrac{h}{x} \cdot x}}
Now we know that
limh0loge(1+hx)hx=1\mathop {\lim }\limits_{h \to 0} \dfrac{{{{\log }_e}\left( {1 + \dfrac{h}{x}} \right)}}{{\dfrac{h}{x}}} = 1
Therefore, from the above equation, we get
ddxln(x)=limh01x\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{x}
Now 1x\dfrac{1}{x} doesn’t matter in this limit, so we can bring 1x\dfrac{1}{x} entirely out of the limit.
Therefore, we get
ddxln(x)=1xlimh01\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}\mathop {\lim }\limits_{h \to 0} 1
ddxln(x)=1x\Rightarrow \dfrac{d}{{dx}}\ln \left( x \right) = \dfrac{1}{x}
Therefore, the derivative of ln(x)\ln \left( x \right) is 1x\dfrac{1}{x}

Note:
Differentiation using first principle is also known as the delta method. The first principle is nothing, but it is the first derivative of the function. The first principle of differentiation helps us to evaluate the derivative of a function using limits. Also note in the formula, in place of hh there is no need to substitute anything. We need to just substitute x+hx + h in place of xx Also at last always remember if the value of the function has hh then substitute the limit value to that.