Solveeit Logo

Question

Question: Differentiate \(\dfrac{{x\log x}}{{{e^x}}}\) with respect to \(x\)...

Differentiate xlogxex\dfrac{{x\log x}}{{{e^x}}} with respect to xx

Explanation

Solution

The problem can be solved with the Substitution Method. We have to substitute logx=t\log x = t. So, we will get x=etx = {e^t}. Then put this value in the equation given the question and differentiate it.

Complete step-by-step answer:
Firstly, we will differentiate logx\log x
Substitute t at the place of logx\log x
logx=t\Rightarrow \log x = t
x=et\Rightarrow x = {e^t}
Then, differentiating both sides, we get
dlogx=dt\Rightarrow d\log x = dt
1xdx=dt\Rightarrow \dfrac{1}{x}dx = dt
(dtdx)=x\Rightarrow \left( {\dfrac{{dt}}{{dx}}} \right) = x
Putting the above value in xlogxex\dfrac{{x\log x}}{{{e^x}}}, we get
etteet=e(tet)t\Rightarrow \dfrac{{{e^t}t}}{{{e^{{e^t}}}}} = {e^{(t - {e^t})}}t
Differentiating w.r.t t,
Since the differentiation of ex{e^x} is ex{e^x}
1.etet+etet(1et)\Rightarrow 1.{e^{t - {e^t}}} + {e^{t - {e^t}}}(1 - {e^t})
Further, we know that dydx=dydt×dtdx=dydt×1x\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{{dt}}{{dx}} = \dfrac{{dy}}{{dt}} \times \dfrac{1}{x}
So, put the value of t and multiply the whole equation by 1x\dfrac{1}{x}.
(e)tet(1+t(1et))1x\Rightarrow {\left( e \right)^{t - {e^t}}}(1 + t(1 - {e^t}))\dfrac{1}{x}
eteet(1+ttet)1x\Rightarrow \dfrac{{{e^t}}}{{{e^{{e^t}}}}}(1 + t - t{e^t})\dfrac{1}{x}
Putting the value t=logxt = \log x in the above equation, we get
1ex(1+logxxlogx)\Rightarrow \dfrac{1}{{{e^x}}}(1 + \log x - x\log x)

Therefore xlogxex\dfrac{{x\log x}}{{{e^x}}} is equal to 1ex(1+logxxlogx)\dfrac{1}{{{e^x}}}(1 + \log x - x\log x).

Note: Additional Information,
The differentiation of exlogx{e^x}\log x
This can be solved with successive differentiation concept,
ddx(exlogx)\Rightarrow \dfrac{d}{{dx}}({e^x}\log x)
exddx(logx)+logxddx(ex)\Rightarrow {e^x}\dfrac{d}{{dx}}(\log x) + \log x\dfrac{d}{{dx}}({e^x})
ex(1x)+logx(ex)\Rightarrow {e^x}\left( {\dfrac{1}{x}} \right) + logx({e^x})
ex(logx+1x)\Rightarrow {e^x}(\log x + \dfrac{1}{x})