Solveeit Logo

Question

Question: Differentiate \( \dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right) \)...

Differentiate tanxx(logexxx)\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right)

Explanation

Solution

Hint : We can find the differentiation of tanxx(logexxx)\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right) using the product rule. Product rule is a rule to differentiate problems where one function is multiplied by another function. We cannot directly differentiate a product of functions so we separate and differentiate the functions according to the product rule. First simplify tanxx(logexxx)\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right) into a simpler expression by using appropriate logarithmic rules and then apply the product rule.
Formula used:
According to the product rule, ddx(uv)=u(dvdx)+v(dudx)\dfrac{d}{{dx}}\left( {uv} \right) = u\left( {\dfrac{{dv}}{{dx}}} \right) + v\left( {\dfrac{{du}}{{dx}}} \right)

Complete step-by-step answer :
We are given find the derivative of tanxx(logexxx)\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right) with respect to x.
ddx[tanxx(logexxx)]\dfrac{d}{{dx}}\left[ {\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right)} \right]
We have, logexxx\log \dfrac{{{e^x}}}{{{x^x}}} which can also be written as log(ex)x\log {\left( {\dfrac{e}{x}} \right)^x} which is equal to xlog(ex)x\log \left( {\dfrac{e}{x}} \right) as logam=mloga\log {a^m} = m\log a .
This gives xlog(ex)=x(logelogx)=x(1logx)x\log \left( {\dfrac{e}{x}} \right) = x\left( {\log e - \log x} \right) = x\left( {1 - \log x} \right) as logab=logalogb\log \dfrac{a}{b} = \log a - \log b and the value of loge\log e is 1.
So tanxx(logexxx)\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right) becomes tanxx×x(1logx)=tanx(1logx)\dfrac{{\tan x}}{x} \times x\left( {1 - \log x} \right) = \tan x\left( {1 - \log x} \right)
So now we have to find the derivative of ddx[tanx(1logx)]\dfrac{d}{{dx}}\left[ {\tan x\left( {1 - \log x} \right)} \right]
Considering tanx\tan x as u and (1logx)\left( {1 - \log x} \right) as v, ddx[tanx(1logx)]\dfrac{d}{{dx}}\left[ {\tan x\left( {1 - \log x} \right)} \right] becomes ddx(uv)\dfrac{d}{{dx}}\left( {uv} \right) which is a product.
According to the product rule, ddx(uv)=u(dvdx)+v(dudx)\dfrac{d}{{dx}}\left( {uv} \right) = u\left( {\dfrac{{dv}}{{dx}}} \right) + v\left( {\dfrac{{du}}{{dx}}} \right)
Therefore, ddx[tanx(1logx)]\dfrac{d}{{dx}}\left[ {\tan x\left( {1 - \log x} \right)} \right] becomes tanxddx(1logx)+(1logx)ddxtanx\tan x\dfrac{d}{{dx}}\left( {1 - \log x} \right) + \left( {1 - \log x} \right)\dfrac{d}{{dx}}\tan x
Derivative of tanx\tan x is sec2xse{c^2}x and the derivative of logx\log x is 1x\dfrac{1}{x}
Substituting these values in tanxddx(1logx)+(1logx)ddxtanx\tan x\dfrac{d}{{dx}}\left( {1 - \log x} \right) + \left( {1 - \log x} \right)\dfrac{d}{{dx}}\tan x , we get tanx(01x)+(1logx)(sec2x)=sec2x(1logx)tanxx\tan x\left( {0 - \dfrac{1}{x}} \right) + \left( {1 - \log x} \right)\left( {se{c^2}x} \right) = se{c^2}x\left( {1 - \log x} \right) - \dfrac{{\tan x}}{x}
Therefore, the differentiation of tanxx(logexxx)\dfrac{{\tan x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right) is sec2x(1logx)tanxxse{c^2}x\left( {1 - \log x} \right) - \dfrac{{\tan x}}{x}
So, the correct answer is “sec2x(1logx)tanxxse{c^2}x\left( {1 - \log x} \right) - \dfrac{{\tan x}}{x} ”.

Note : Do not confuse between differentiation and integration. For example, differentiation of sine gives positive cosine whereas integration of sine gives negative cosine. As we can see, except for the sign, the whole result is the same. So be careful with the results of differentiations and integration and while applying the product rule as we may get confused u with v and v with u.