Solveeit Logo

Question

Question: Differentiate\[\dfrac{{\tan \,\,x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right)\]....

Differentiatetanxx(logexxx)\dfrac{{\tan \,\,x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right).

Explanation

Solution

:A derivative is the rate at which output changes with respect to an input. We know that logxx=xlogx\log \,{x^x} = x\,\,\log \,\,x.

Complete step by step solution:
Let y=tanxx(logexxx)y = \dfrac{{\tan x}}{x}\left( {\log \,\,\dfrac{{{e^x}}}{{{x^x}}}} \right)
y=tanxx(logexxx)y = \dfrac{{\tan x}}{x}\left( {\log \,\,\dfrac{{{e^x}}}{{{x^x}}}} \right)
y=tanxx(log(ex)x)y = \dfrac{{\tan x}}{x}\left( {\log \,\,{{\left( {\dfrac{e}{x}} \right)}^x}} \right)
y=tanxxx×log(ex)y = \dfrac{{\tan x}}{x}\,x\, \times \,\log \,\,\left( {\dfrac{e}{x}} \right)........................(logxx=xlogx)\left( {\because \log \,{x^x} = x\,\,\log \,\,x} \right)
y=tanx(logelogx)y = \tan x\,\,\left( {\log \,\,e\,\, - \,\,\log \,x} \right)……………………..[log(ab)=logalogb]\left[ {\because \log \left( {\dfrac{a}{b}} \right) = \log a - \log b} \right]
y=tanx(1logx)y = \tan x\,\,\left( {1\,\, - \,\,\log \,x} \right)…...........................(loge=1)\left( {\because \log e = 1} \right)
y=tanxtanxlogxy = \tan x\,\, - \tan \,x\,\,\log \,x
We will differentiate y with respect to x.
dydx=sec2x[tanxddxlogx+logxddxtanx]\dfrac{{dy}}{{dx}} = {\sec ^2}x - \left[ {\tan x\dfrac{d}{{dx}}\log \,x\,\, + \,\,\log \,x\,\,\dfrac{d}{{dx}}\tan \,x} \right]
When we differentiatetanxlogx\tan \,x\,\,\log \,x then we 1st taketanx{\text{tan}}\,{\text{x}}as a constant term and differentiatelogx{\text{log}}\,{\text{x}}, furtherlogx{\text{log}}\,{\text{x}} is a constant term and differentiate the valuetanx{\text{tan}}\,{\text{x}}.

dydx=sec2x[tanx×1x×ddxx+logxddxtanx] dydx=sec2x[tanx1xx×1+logx×sec2x]  \dfrac{{dy}}{{dx}} = {\sec ^2}x - \left[ {\tan x \times \dfrac{1}{x} \times \dfrac{d}{{dx}}\,x\,\, + \,\,\log \,x\,\,\dfrac{d}{{dx}}\tan \,x} \right] \\\ \dfrac{{dy}}{{dx}} = {\sec ^2}x - \left[ {\tan x\dfrac{1}{x}x \times 1 + \log x \times {{\sec }^2}x} \right] \\\

dydx=sec2xtanxxlogxsec2x\dfrac{{dy}}{{dx}} = {\sec ^2}x - \dfrac{{\tan x}}{x}\,\, - \,\,\log \,\,x\,\,{\sec ^2}x
We will take commonsec2x{\sec ^2}x, we will get
dydx=sec2x(1logx)tanxx\dfrac{{dy}}{{dx}} = {\sec ^2}x\left( {1 - \log x} \right) - \dfrac{{\tan x}}{x}\,\,

Note: The properties of logarithm are:
(i) log(a)m=mloga\log {(a)^m} = m\log a
(ii)loga.logb=log(a+3)\log a.\log b = \log \left( {a + 3} \right)
(iii)log(ab)=logalogb\log \left( {\dfrac{a}{b}} \right) = \log a - \log b
(iv)log1=0\log 1 = 0
(v)loge=1\log e = 1