Question
Question: Differentiate\[\dfrac{{\tan \,\,x}}{x}\left( {\log \dfrac{{{e^x}}}{{{x^x}}}} \right)\]....
Differentiatextanx(logxxex).
Solution
:A derivative is the rate at which output changes with respect to an input. We know that logxx=xlogx.
Complete step by step solution:
Let y=xtanx(logxxex)
y=xtanx(logxxex)
y=xtanx(log(xe)x)
y=xtanxx×log(xe)........................(∵logxx=xlogx)
y=tanx(loge−logx)……………………..[∵log(ba)=loga−logb]
y=tanx(1−logx)…...........................(∵loge=1)
y=tanx−tanxlogx
We will differentiate y with respect to x.
dxdy=sec2x−[tanxdxdlogx+logxdxdtanx]
When we differentiatetanxlogx then we 1st taketanxas a constant term and differentiatelogx, furtherlogx is a constant term and differentiate the valuetanx.
dxdy=sec2x−xtanx−logxsec2x
We will take commonsec2x, we will get
dxdy=sec2x(1−logx)−xtanx
Note: The properties of logarithm are:
(i) log(a)m=mloga
(ii)loga.logb=log(a+3)
(iii)log(ba)=loga−logb
(iv)log1=0
(v)loge=1