Solveeit Logo

Question

Question: Differentiate \[{(\cos x)^{\cos x}}\] with respect to x....

Differentiate (cosx)cosx{(\cos x)^{\cos x}} with respect to x.

Explanation

Solution

We differentiate the term in the question by assuming the whole term as a variable and then taking log on both sides of the equation. Using the property of log we open RHS and then differentiate both sides.
*If m, n are two integers then, log(m)n=n(logm)\log {(m)^n} = n(\log m)

Complete step-by-step answer:
Let us assume y=(cosx)cosxy = {(\cos x)^{\cos x}}
Then taking log on both sides of the equation we can write.
log(y)=log[(cosx)cosx]\log (y) = \log [{(\cos x)^{\cos x}}] … (1)
Since we know the property of log, if m, n are two integers then, log(m)n=n(logm)\log {(m)^n} = n(\log m)
Here m=cosx,n=cosxm = \cos x,n = \cos x
Therefore, we can write log[(cosx)cosx]=cosx[log(cosx)]\log [{(\cos x)^{\cos x}}] = \cos x[\log (\cos x)]
Substituting the value in equation (1)
logy=cosx[log(cosx)]\log y = \cos x[\log (\cos x)]
Now we differentiate on both sides of the equation with respect to x.
ddx(logy)=ddx(cosx[log(cosx)])\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right)
We will solve the RHS of the equation first.
We apply the product rule of differentiation on RHS of the equation.
Product rule says that ddx(mn)=mdndx+ndmdx\dfrac{d}{{dx}}(mn) = m\dfrac{{dn}}{{dx}} + n\dfrac{{dm}}{{dx}}.
Substitute the values of m=cosx,n=log(cosx)m = \cos x,n = \log (\cos x)

ddx(cosx[log(cosx)])=cosxd[log(cosx)]dx+[log(cosx)]d(cosx)dx ddx(cosx[log(cosx)])=cosxd[log(cosx)]dx+[log(cosx)](sinx)  \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]\dfrac{{d(\cos x)}}{{dx}} \\\ \Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x\dfrac{{d[\log (\cos x)]}}{{dx}} + [\log (\cos x)]( - \sin x) \\\
                                                                                                                                         … (2)  

Now we have to apply chain rule for differentiation of the term [log(cosx)][\log (\cos x)].
According to chain rule ddx[f(g(x))]=f(g(x)).g(x)\dfrac{d}{{dx}}\left[ {f(g(x))} \right] = f'(g(x)).g'(x)where ff'denotes differentiation of function f with respect to x and gg'denotes differentiation of function g with respect to x.
Here substituting the values of f(x)=log(x),g(x)=cosxf(x) = \log (x),g(x) = \cos x

ddx[log(cosx)]=d[log(cosx)]dx.d(cosx)dx ddx[log(cosx)]=1cosx.(sinx)  \dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{{d[\log (\cos x)]}}{{dx}}.\dfrac{{d(\cos x)}}{{dx}} \\\ \dfrac{d}{{dx}}\left[ {\log (\cos x)} \right] = \dfrac{1}{{\cos x}}.( - \sin x) \\\

Substitute the value in equation (2)
ddx(cosx[log(cosx)])=cosx×1cosx×(sinx)+[log(cosx)](sinx)\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = \cos x \times \dfrac{1}{{\cos x}} \times ( - \sin x) + [\log (\cos x)]( - \sin x)
Cancel out the common terms from numerator and denominator.
ddx(cosx[log(cosx)])=sinxsinx[log(cosx)]\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x - \sin x[\log (\cos x)]
Now we can take sinx - \sin x common and write the terms in RHS.
ddx(cosx[log(cosx)])=sinx1+log(cosx)\Rightarrow \dfrac{d}{{dx}}\left( {\cos x[\log (\cos x)]} \right) = - \sin x\\{ 1 + \log (\cos x)\\}
Now solving LHS of the equation we get
ddx(logy)=1y×dydx\Rightarrow \dfrac{d}{{dx}}\left( {\log y} \right) = \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} {Applying chain rule}
Now equating both LHS and RHS of the equation we get
1y×dydx=sinx1+log(cosx)\Rightarrow \dfrac{1}{y} \times \dfrac{{dy}}{{dx}} = - \sin x\\{ 1 + \log (\cos x)\\}
Cross multiplying the value of y to RHS of the equation.

dydx=sinx1+log(cosx)×y dydx=sinx1+log(cosx)×(cosx)cosx  \Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\\{ 1 + \log (\cos x)\\} \times y \\\ \Rightarrow \dfrac{{dy}}{{dx}} = - \sin x\\{ 1 + \log (\cos x)\\} \times {(\cos x)^{\cos x}} \\\

Thus, differentiation of (cosx)cosx{(\cos x)^{\cos x}} is sinx1+log(cosx)×(cosx)cosx - \sin x\\{ 1 + \log (\cos x)\\} \times {(\cos x)^{\cos x}}.

Note: Students are likely to make mistake in solving this question as they assume the power as normal power and try to differentiate directly through the way d(xn)dx=nxn1\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}} which is wrong.