Solveeit Logo

Question

Question: Differential equation whose general solution is \(y = c_{1}x + \frac{c_{2}}{x}\) for all values of \...

Differential equation whose general solution is y=c1x+c2xy = c_{1}x + \frac{c_{2}}{x} for all values of c1c_{1} and c2c_{2} is

A

d2ydx2+x2y+dydx=0\frac{d^{2}y}{dx^{2}} + \frac{x^{2}}{y} + \frac{dy}{dx} = 0

B

d2ydx2+yx2dydx=0\frac{d^{2}y}{dx^{2}} + \frac{y}{x^{2}} - \frac{dy}{dx} = 0

C

d2ydx212xdydx=0\frac{d^{2}y}{dx^{2}} - \frac{1}{2x}\frac{dy}{dx} = 0

D

d2ydx2+1xdydxyx2=0\frac{d^{2}y}{dx^{2}} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^{2}} = 0

Answer

d2ydx2+1xdydxyx2=0\frac{d^{2}y}{dx^{2}} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^{2}} = 0

Explanation

Solution

y=c1x+c2xy = c_{1}x + \frac{c_{2}}{x} .....(i)

There are two arbitrary constants. To eliminate these constants, we need to differentiate (i) twice.

Differentiating (i) with respect to x,

dydx=c1c2x2\frac{dy}{dx} = c_{1} - \frac{c_{2}}{x^{2}} .....(ii)

Again differentiating with respect to x,

d2ydx2=2c2x3\frac{d^{2}y}{dx^{2}} = \frac{2c_{2}}{x^{3}} ......(iii)

From (iii), c2=x32d2ydx2c_{2} = \frac{x^{3}}{2}\frac{d^{2}y}{dx^{2}} and from (ii), c1=dydx+c2x2c_{1} = \frac{dy}{dx} + \frac{c_{2}}{x^{2}};

c1=dydx+x2d2ydx2c_{1} = \frac{dy}{dx} + \frac{x}{2}\frac{d^{2}y}{dx^{2}}

From (i), y=(dydx+x2d2ydx2)x+x22d2ydx2y = \left( \frac{dy}{dx} + \frac{x}{2} \cdot \frac{d^{2}y}{dx^{2}} \right)x + \frac{x^{2}}{2} \cdot \frac{d^{2}y}{dx^{2}}

y=x2d2ydx2+xdydxy = x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx}

d2ydx2+1xdydxyx2=0\frac{d^{2}y}{dx^{2}} + \frac{1}{x}\frac{dy}{dx} - \frac{y}{x^{2}} = 0