Solveeit Logo

Question

Question: Differential equation of \(y = \sec \left( \tan ^ { - 1 } x \right)\) is...

Differential equation of y=sec(tan1x)y = \sec \left( \tan ^ { - 1 } x \right) is

A

(1+x2)dydx=y+x\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = y + x

B

(1+x2)dydx=yx\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = y - x

C

(1+x2)dydx=xy\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = x y

D

(1+x2)dydx=xy\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = \frac { x } { y }

Answer

(1+x2)dydx=xy\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = x y

Explanation

Solution

y=sec(tan1x)y = \sec \left( \tan ^ { - 1 } x \right)

dydx=sec(tan1x)tan(tan1x)11+x2\frac { d y } { d x } = \sec \left( \tan ^ { - 1 } x \right) \tan \left( \tan ^ { - 1 } x \right) \cdot \frac { 1 } { 1 + x ^ { 2 } } =xy1+x2= \frac { x y } { 1 + x ^ { 2 } }

(1+x2)dydx=xy\left( 1 + x ^ { 2 } \right) \frac { d y } { d x } = x y.