Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Differential coefficient of tan12x1x2tan^{-1} \frac{2x}{1-x^{2}} with respect to sin12x1+x2sin^{-1} \frac{2x}{1+x^{2}} will be

A

11

B

1-1

C

1/2- 1/2

D

xx

Answer

11

Explanation

Solution

Let u=tan12x1x2....(i)u=tan^{-1} \frac{2x}{1-x^{2}} \,....\left(i\right) and v=sin12x1+x2....(ii)v=sin^{-1} \frac{2x}{1+x^{2}} \,....\left(ii\right) In equation (i)\left(i\right) put, x=tanθx = tan \theta u=tan1[2tanθ1tan2θ]=tan1(tan2θ)\therefore u=tan^{-1}\left[\frac{2\,tan\,\theta}{1-tan^{2}\,\theta}\right]=tan^{-1}\left(tan\,2\,\theta\right) u=2θdudθ=2....(a)\Rightarrow u=2\,\theta \Rightarrow \frac{du}{d\theta }=2\,....\left(a\right) In equation (ii)\left(ii\right), put x=tanθx = tan\,\theta v=sin1[2tanθ1+tan2θ]=sin1(sin2θ)\therefore v=sin^{-1}\left[\frac{2\,tan\,\theta }{1+tan^{2}\,\theta }\right]=sin^{-1}\left(sin\,2\theta \right) v=2θdvdθ=2.....(b)\Rightarrow v=2\theta \Rightarrow \frac{dv}{d\theta}=2 \,.....\left(b\right) From equations (a)\left(a\right) and (b),\left(b\right), dudv=dudθ×dθdv=2×12=1\frac{du}{dv}=\frac{du}{d\theta} \times\frac{d\theta}{dv}=2\times\frac{1}{2}=1 \therefore Required differential coefficient will be 1.