Solveeit Logo

Question

Mathematics Question on limits and derivatives

Differential co-efficient of log10x\log_{10} x w.r.t. logx10log_x 10 is

A

(logx)2(log10)2 - \frac{(\log x) 2}{(\log 10)^2}

B

(log10x)2(log10)2 \frac{(\log_{10} x) 2}{(\log 10)^2}

C

(logx10)2(log10)2 \frac{(\log_x 10) 2}{(\log 10)^2}

D

(log10)2(logx)2 - \frac{(\log 10) 2}{(\log x)^2}

Answer

(logx)2(log10)2 - \frac{(\log x) 2}{(\log 10)^2}

Explanation

Solution

Let y=log10xandz=logx10=1log10x=1yy = \log_{10} x \,and\,z = \log_{x} 10 = \frac{1}{\log_{10} x} = \frac{1}{y} y=1zdydz=1z2.\therefore y = \frac{1}{z} \therefore \frac{dy}{dz} = - \frac{1}{z^{2}} . =1(logx10)2=(logx)2(log10)2= - \frac{1}{\left(\log_{x} 10\right)^{2}} = - \frac{\left(\log x\right)^{2}}{\left(\log10\right)^{2}}