Solveeit Logo

Question

Question: Diagram shows a circular loop of radius r and resistance R. A variable magnetic field of induction B...

Diagram shows a circular loop of radius r and resistance R. A variable magnetic field of induction B = B0e–t is established inside the coil. If the key K is closed, the power developed in the coil just after closing the key-

A

B

C

D

B02π2r4R\frac { \mathrm { B } _ { 0 } { } ^ { 2 } \pi ^ { 2 } \mathrm { r } ^ { 4 } } { \mathrm { R } }

Answer

B02π2r4R\frac { \mathrm { B } _ { 0 } { } ^ { 2 } \pi ^ { 2 } \mathrm { r } ^ { 4 } } { \mathrm { R } }

Explanation

Solution

Ein = A dBdt\frac { \mathrm { dB } } { \mathrm { dt } } = pr2B0 = (pr2e–t B0)

\P = B02π2r4R=P\frac { \mathrm { B } _ { 0 } ^ { 2 } \pi ^ { 2 } \mathrm { r } ^ { 4 } } { \mathrm { R } } = \mathrm { P }