Solveeit Logo

Question

Mathematics Question on Integral Calculus

x+5x2+1dx=∫\dfrac{x+5}{x^{2}+1}dx=

A

3lnx12lnx+1+C 3ln|x-1|-2ln|x+1|+C

B

2lnx13lnx+1+C2ln|x-1|-3ln|x+1|+C

C

lnx2lnx+1+Cln|x-2|-ln|x+1|+C

D

lnx+2+lnx+1+C ln|x+2|+ln|x+1|+C

E

2lnx1+3lnx1+C2ln|x-1|+3ln|x-1|+C

Answer

3lnx12lnx+1+C 3ln|x-1|-2ln|x+1|+C

Explanation

Solution

x+5x2+1dx=∫\dfrac{x+5}{x^{2}+1}dx=

So to solve this question, we can again use partial fraction decomposition.

_Step 1: _

Factorize the denominator. (x21)(x^2 - 1) can be factored as(x1)(x+1).(x - 1)(x + 1).

Step 2:

Partial fraction decomposition. The expression x+5x21\dfrac{x+5}{x^2 - 1} can be rewritten as the sum of two fractions with unknown constants AA and BB:

x+5x21=Ax+1+Bx1\dfrac{x+5}{x^2 - 1} = \dfrac{A}{x +1}+\dfrac{B}{x-1}

Step 3 :

Now to find the values of A and B, we need to find a common denominator, which is (x1)(x+1)(x- 1)(x + 1), and then equate the numerators:

x+5=A(x+1)+B(x1)x + 5 = A(x+ 1) + B(x- 1)

Now, solve for A and B by comparing coefficients: A+B=1A + B = 1

(by comparing the coefficients of xx) AB=5A - B = 5 ⇢(by comparing the constant terms)

Adding the two equations: 2A=62A = 6

                                        ⇒$A=3$

Substituting the value of AA one of the equations to find we get

B=2B = -2

_Step 4: _

Now we can re-write the parent expression as,

x+5x21dx=(Ax1+Bx+1)dx∫\dfrac{x + 5}{x^2 - 1} dx = ∫(\dfrac{A}{x - 1}+\dfrac{B}{x+ 1}) dx

=(3x1)(2x+1)dx=∫(\dfrac{3}{x-1}) - (\dfrac{2}{x+1})dx

=(3x1)(2x+1)dx=∫(\dfrac{3}{x-1}) - (\dfrac{2}{x+1})dx

=(3x1)dx(2x+1)dx=∫(\dfrac{3}{x-1})dx - ∫(\dfrac{2}{x+1})dx

=3lnx12lnx+1+C= 3ln|x-1|-2ln|x+1|+C (Ans.)