Solveeit Logo

Question

Question: \[\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}...

tan50o+sec50ocot40o+cosec40o+cos40o.cosec50o=?\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}=?

Explanation

Solution

Hint: First of all convert the given expression in terms of sinθ\sin \theta and cosθ\cos \theta by using tanθ=sinθcosθ,cotθ=cosθsinθ,secθ=1cosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta },\cot \theta =\dfrac{\cos \theta }{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta } and cosecθ=1sinθ\text{cosec}\theta =\dfrac{1}{\sin \theta }. Then use sin(90θ)=cosθ\sin \left( 90-\theta \right)=\cos \theta and cos(90θ)=sinθ\cos \left( 90-\theta \right)=\sin \theta and substitute θ=500 and 40o\theta ={{50}^{0}}\text{ and 4}{{\text{0}}^{o}} to get the final value of the expression.

Complete step-by-step answer:
Here, we have to find the value of the expression, tan50o+sec50ocot40o+cosec40o+cos40o.cosec50o\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\text{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\text{cosec5}{{\text{0}}^{o}}.
Let us consider the expression given in the question
E=tan50o+sec50ocot40o+cosec40o+cos40o.cosec50oE=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}
We know that tanθ=sinθcosθ and cotθ=cosθsinθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }\text{ and }\cot \theta =\dfrac{\cos \theta }{\sin \theta }.
By applying these in the above expression, we get,
E=sin50ocos50o+sec50ocos40osin40o+cosec40o+cos40o.cosec50oE=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\sec {{50}^{o}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}
We also know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. By applying these in the above expression, we get,
E=sin50ocos50o+1cos50ocos40osin40o+1sin40o+cos40o.1sin50oE=\dfrac{\dfrac{\sin {{50}^{o}}}{\cos {{50}^{o}}}+\dfrac{1}{\cos {{50}^{o}}}}{\dfrac{\cos {{40}^{o}}}{\sin {{40}^{o}}}+\dfrac{1}{\sin {{40}^{o}}}}+\cos {{40}^{o}}.\dfrac{1}{\sin {{50}^{o}}}
By simplifying the above expression, we get
E=(sin50o+1)cos50o(cos40o+1)sin40o+cos40osin50oE=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\sin {{40}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}
We know that, sin(90θ)=cosθ\sin \left( 90-\theta \right)=\cos \theta
By substituting, θ=50o\theta ={{50}^{o}}, we get,
sin(9050o)=cos50o\sin \left( 90-{{50}^{o}} \right)=\cos {{50}^{o}}
Or, sin(40o)=cos(50o)\sin \left( {{40}^{o}} \right)=\cos \left( {{50}^{o}} \right)
By substituting sin40o=cos50o\sin {{40}^{o}}=\cos {{50}^{o}} in the above expression, we get,
E=(sin50o+1)cos50o(cos40o+1)cos50o+cos40osin50oE=\dfrac{\dfrac{\left( \sin {{50}^{o}}+1 \right)}{\cos {{50}^{o}}}}{\dfrac{\left( \cos {{40}^{o}}+1 \right)}{\cos {{50}^{o}}}}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}
By cancelling the like terms, we get,
E=(sin50o)+1(cos40o)+1+cos40osin50oE=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \cos {{40}^{o}} \right)+1}+\dfrac{\cos {{40}^{o}}}{\sin {{50}^{o}}}
We also know that cos(90oθ)=sinθ\cos \left( {{90}^{o}}-\theta \right)=\sin \theta
By substituting θ=50o\theta ={{50}^{o}}, we get,
cos(90o50o)=sin50o\cos \left( {{90}^{o}}-{{50}^{o}} \right)=\sin {{50}^{o}}
Or, cos(40o)=sin(50o)\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right)
By substituting cos(40o)=sin(50o)\cos \left( {{40}^{o}} \right)=\sin \left( {{50}^{o}} \right) in the above expression, we get,
E=(sin50o)+1(sin50o)+1+sin50osin50oE=\dfrac{\left( \sin {{50}^{o}} \right)+1}{\left( \sin {{50}^{o}} \right)+1}+\dfrac{\sin {{50}^{o}}}{\sin {{50}^{o}}}
By cancelling the like terms, we get,
E=11+11E=\dfrac{1}{1}+\dfrac{1}{1}
Or, E=1+1=2E=1+1=2
Hence, the value of the expression tan50o+sec50ocot40o+cosec40o+cos40o.cosec50o\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}} is equal to 2.

Note: Students can also solve this question directly in this way.
Let the expression be
E=tan50o+sec50ocot40o+cosec40o+cos40o.cosec50oE=\dfrac{\tan {{50}^{o}}+\sec {{50}^{o}}}{\cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}}}+\cos {{40}^{o}}.\operatorname{cosec}{{50}^{o}}
We know that tan(90oθ)=cotθ\tan \left( {{90}^{o}}-\theta \right)=\cot \theta and sec(90oθ)=cosecθ\sec \left( {{90}^{o}}-\theta \right)=\operatorname{cosec}\theta
By substituting θ=40o\theta ={{40}^{o}}, we get,
tan50o=cot40o\tan {{50}^{o}}=\cot {{40}^{o}} and sec50o=cosec40o\sec {{50}^{o}}=\operatorname{cosec}{{40}^{o}}.
By substituting the value of tan50o\tan {{50}^{o}} and sec50o\sec {{50}^{o}} in the above expression, we get,
E=(cot40o+cosec40o)(cot40o+cosec40o)+cos40ocosec40oE=\dfrac{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}{\left( \cot {{40}^{o}}+\operatorname{cosec}{{40}^{o}} \right)}+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}
By cancelling the like terms, we get,
E=1+cos40ocosec40oE=1+\cos {{40}^{o}}\operatorname{cosec}{{40}^{o}}
We know that, cosec(90θ)=secθ\operatorname{cosec}\left( 90-\theta \right)=\sec \theta
By substituting θ=50o\theta ={{50}^{o}}, we get,
cosec(40o)=sec50o\operatorname{cosec}\left( {{40}^{o}} \right)=\sec {{50}^{o}}
By substituting the value of cosec40o\operatorname{cosec}{{40}^{o}} in the above expression, we get
E=1+cos40o,sec40oE=1+\cos {{40}^{o}},\sec {{40}^{o}}
We know that cosθ.secθ=1\cos \theta .\sec \theta =1. By applying this in the above expression, we get
E=1+1=2E=1+1=2
Hence, the value of the given expression is 2.