Solveeit Logo

Question

Question: \(\dfrac{{\sin {\rm{A}}}}{{\sin \left( {90^\circ - {\rm{A}}} \right)}} + {\rm{\;}}\dfrac{{\cos {\rm{...

sinAsin(90A)+  cosAcos(90A)=  sec(90A)cosec(90A)\dfrac{{\sin {\rm{A}}}}{{\sin \left( {90^\circ - {\rm{A}}} \right)}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\cos \left( {90^\circ - {\rm{A}}} \right)}} = {\rm{\;}}\sec \left( {90^\circ - {\rm{A}}} \right){\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right)

Explanation

Solution

Hint: In this question we have to prove the given expression so we have to first simplify the LHS part and use the identities sin(90A)=cosA\sin \left( {90^\circ - {\rm{A}}} \right) = \cos {\rm{A}} and cos(90A)=sinA\cos \left( {90^\circ - {\rm{A}}} \right) = \sin {\rm{A}} and then make use of identity sin2A+  cos2A=1{\sin ^2}{\rm{A}} + {\rm{\;}}{\cos ^2}{\rm{A}} = 1 to get the RHS part.

Complete step-by-step answer:
We have to prove LHS = RHS
Now,
LHS = sinAsin(90A)+  cosAcos(90A)\dfrac{{\sin {\rm{A}}}}{{\sin \left( {90^\circ - {\rm{A}}} \right)}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\cos \left( {90^\circ - {\rm{A}}} \right)}}
As we know that, sin(90A)=cosA\sin \left( {90^\circ - {\rm{A}}} \right) = \cos {\rm{A}} and cos(90A)=sinA\cos \left( {90^\circ - {\rm{A}}} \right) = \sin {\rm{A}}
LHS = sinAcosA+  cosAsinA\dfrac{{\sin {\rm{A}}}}{{\cos {\rm{A}}}} + {\rm{\;}}\dfrac{{\cos {\rm{A}}}}{{\sin {\rm{A}}}}
Taking LCM, we get
LHS = sin2A+  cos2AsinAcosA\dfrac{{{{\sin }^2}{\rm{A}} + {\rm{\;}}{{\cos }^2}{\rm{A}}}}{{\sin {\rm{A}}\cos {\rm{A}}}}
From trigonometric identity, sin2A+  cos2A=1{\sin ^2}{\rm{A}} + {\rm{\;}}{\cos ^2}{\rm{A}} = 1
LHS = 1sinAcosA=cosec  AsecA\dfrac{1}{{\sin {\rm{A}}\cos {\rm{A}}}} = {\rm{cosec\;A}}\sec {\rm{A}}
As we know that sec(90A)=cosecA\sec \left( {90^\circ - {\rm{A}}} \right) = {\rm{cosecA}} and cosec(90A)=secA{\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right) = \sec {\rm{A}}
LHS = sec(90A)cosec(90A)\sec \left( {90^\circ - {\rm{A}}} \right){\rm{cosec}}\left( {90^\circ - {\rm{A}}} \right) = RHS

Note: Whenever we face such types of questions we need to use the standard identities of trigonometry in order to get the LHS part equal to the RHS part.