Solveeit Logo

Question

Question: \[\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)\] is equal to (1) \[2{x^{\ln x - 1}}\ln x\] (2) \[...

ddx(xlnx)\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right) is equal to
(1) 2xlnx1lnx2{x^{\ln x - 1}}\ln x
(2) xlnx1{x^{\ln x - 1}}
(3) 23(lnx)\dfrac{2}{3}\left( {\ln x} \right)
(4) xlnx1.lnx{x^{\ln x - 1}}.\ln x

Explanation

Solution

To solve ddx(xlnx)\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right), first assume that y=xlnxy = {x^{\ln x}}. Perform the natural logarithm on both sides. This will give you lny=(lnx)2\ln y = {\left( {\ln x} \right)^2}. Now differentiate this equation by using implicit differentiation on the LHS and chain rule on the RHS. You will obtain 1ydydx=2xlnx1lnx\dfrac{1}{y}\dfrac{{dy}}{{dx}} = 2{x^{\ln x - 1}}\ln x.

Complete step by step solution:
Given: To calculate ddx(xlnx)\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)
The 4 options given are:
(1) 2xlnx1lnx2{x^{\ln x - 1}}\ln x (2) xlnx1{x^{\ln x - 1}}
(3) 23(lnx)\dfrac{2}{3}\left( {\ln x} \right) (4) xlnx1.lnx{x^{\ln x - 1}}.\ln x
To calculate ddx(xlnx)\dfrac{d}{{dx}}\left( {{x^{\ln x}}} \right)
First assume that y=xlnxy = {x^{\ln x}} … (i)
Then we need to evaluate dydx\dfrac{{dy}}{{dx}}
Now apply the natural logarithmic function to both sides of the equation (i) to get.
lny=ln(xlnx)\ln y = \ln \left( {{x^{\ln x}}} \right)
lny=lnx.lnx\Rightarrow \ln y = \ln x.\ln x [lnab=blna]\left[ {\because \ln {a^b} = b\ln a} \right]
lny=(lnx)2\Rightarrow \ln y = {\left( {\ln x} \right)^2} … (ii)
Now differentiate equation (ii). Apply implicit differentiation on the LHS and chain rule on the RHS to get,
1y.dydx=2(lnx)(1x)\dfrac{1}{y}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right)\left( {\dfrac{1}{x}} \right) … (iii)

1xlnx.dydx=2(lnx)x1 dydx=(xlnx)2(lnx)x1 dydx=2xln(x)1.lnx  \Rightarrow \dfrac{1}{{{x^{\ln x}}}}.\dfrac{{dy}}{{dx}} = 2\left( {\ln x} \right){x^{ - 1}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \left( {{x^{\ln x}}} \right)2\left( {\ln x} \right){x^{ - 1}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 2{x^{\ln \left( x \right) - 1}}.\ln x \\\

The correct answer for ddxxlnx\dfrac{d}{{dx}}{x^{\ln x}} is 2xln(x)1.lnx2{x^{\ln \left( x \right) - 1}}.\ln x.

Note:
To solve this kind of question you must substitute a variable as the expression to be differentiated. Here we have assumedy=xlnxy = {x^{\ln x}}.
You must know how to handle the formulas of natural logarithms(ln)\left( {\ln } \right). You must know to differentiate ddxlnx\dfrac{d}{{dx}}\ln x to efficiently perform chain rule. Here, we have directly performed the chain rule in one step but you may break down each step of the chain reaction and perform it one by one.
For e.g. ddx(lnx)2\dfrac{d}{{dx}}{\left( {\ln x} \right)^2}
Assume u=lnxu = \ln x
and f=u2f = {u^2}

ddx(lnx)2=dfdu.dudx =dduu2.ddx.lnx =2u.1x =2lnx.1x  \dfrac{d}{{dx}}{\left( {\ln x} \right)^2} = \dfrac{{df}}{{du}}.\dfrac{{du}}{{dx}} \\\ = \dfrac{d}{{du}}{u^2}.\dfrac{d}{{dx}}.\ln x \\\ = 2u.\dfrac{1}{x} \\\ = 2\ln x.\dfrac{1}{x} \\\