Solveeit Logo

Question

Question: \[\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}\] is equal to A. \[\ta...

cos100+sin100cos100sin100\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}} is equal to
A. tan550\tan {55^0}
B. cot550\cot {55^0}
C. tan350 - \tan {35^0}
D. cot350 - \cot {35^0}

Explanation

Solution

Hint: In this problem just multiply with the suitable trigonometric ratio and convert the given equation in terms of tan or cot\tan {\text{ or }}\cot by using the simple trigonometric formulae since the given options are in terms of tan and cot\tan {\text{ and }}\cot .

Complete step-by-step answer:
Given cos100+sin100cos100sin100\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}
Multiplying and dividing with cos100\cos {10^0} then we have

cos100cos100(cos100+sin100cos100sin100)  cos100cos100+sin100cos100cos100cos100sin100cos100  \Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}}\left( {\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}}} \right) \\\ \\\ \dfrac{{ \Rightarrow \dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} + \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}}{{\dfrac{{\cos {{10}^0}}}{{\cos {{10}^0}}} - \dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}}}} \\\

Since sin100cos100=tan100\dfrac{{\sin {{10}^0}}}{{\cos {{10}^0}}} = \tan {10^0}

1+tan1001tan100 \Rightarrow \dfrac{{1 + \tan {{10}^0}}}{{1 - \tan {{10}^0}}}
We can write tan450\tan {45^0}in place of 11 as tan450=1\tan {45^0} = 1 then we get
tan450+tan1001tan450tan100\Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}}
By using the formulae tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} we have

tan450+tan1001tan450tan100=tan(450+100)   = tan550  \Rightarrow \dfrac{{\tan {{45}^0} + \tan {{10}^0}}}{{1 - \tan {{45}^0}\tan {{10}^0}}} = \tan \left( {{{45}^0} + {{10}^0}} \right) \\\ \\\ {\text{ = tan5}}{{\text{5}}^0} \\\

Thus, cos100+sin100cos100sin100\dfrac{{\cos {{10}^0} + \sin {{10}^0}}}{{\cos {{10}^0} - \sin {{10}^0}}} is equal to tan550\tan {55^0}

Therefore, the answer is option A tan550\tan {55^0}

Note: In this problem there are chances to change the options by converting tan\tan into cot\cot or fromtan\tan to cot\cot . Then we have to change them accordingly. And try to remember more formulae from the trigonometry part so that you can make problems easier.