Solveeit Logo

Question

Mathematics Question on Integral Calculus

1cosx(sinx+2cosx)dx=∫\dfrac{1}{cosx(sinx+2cosx)} dx=

A

ln(1tanx)+Cln|(1-tanx)|+C

B

ln3+sinx+Cln |3+sinx|+C

C

ln2+tanx+Cln |2+tanx|+C

D

ln1+2secx+Cln |1+2secx|+C

E

ln2tanx+Cln |2-tanx|+C

Answer

ln2+tanx+Cln |2+tanx|+C

Explanation

Solution

Given that

1cosx(sinx+2cosx)dx∫\dfrac{1}{cosx(sinx+2cosx)} dx

take, I=1cosx(sinx+2cosx)dxI = ∫\dfrac{1}{cosx(sinx+2cosx)} dx

      $= ∫\dfrac{1}{cosx.sinx+2cos^{2}x)} dx$

     $= ∫\dfrac{sec^{2}x}{tanx+2} dx$        ⇢⇢[by dividing $cos^{2}x$ on both numerator and denominator]

         take $tanx +2 = u$, then derivate both sides w.r.t x we get 

        $sec^{2}x dx= du$

Bye applying this we can write , 1udu∫\dfrac{1}{u} du

                                              $= ln|u|$

                                              $= ln|(tanx+2)|+C$  

                                              $= ln|(2+tanx)|+C$