Question
Mathematics Question on Integral Calculus
∫cosx(sinx+2cosx)1dx=
A
ln∣(1−tanx)∣+C
B
ln∣3+sinx∣+C
C
ln∣2+tanx∣+C
D
ln∣1+2secx∣+C
E
ln∣2−tanx∣+C
Answer
ln∣2+tanx∣+C
Explanation
Solution
Given that
∫cosx(sinx+2cosx)1dx
take, I=∫cosx(sinx+2cosx)1dx
$= ∫\dfrac{1}{cosx.sinx+2cos^{2}x)} dx$
$= ∫\dfrac{sec^{2}x}{tanx+2} dx$ ⇢⇢[by dividing $cos^{2}x$ on both numerator and denominator]
take $tanx +2 = u$, then derivate both sides w.r.t x we get
$sec^{2}x dx= du$
Bye applying this we can write , ∫u1du
$= ln|u|$
$= ln|(tanx+2)|+C$
$= ln|(2+tanx)|+C$