Solveeit Logo

Question

Question: Determine the value for the limit:- \(\mathop {\lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\...

Determine the value for the limit:- limx023x3xsin3x\mathop {\lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}}

Explanation

Solution

According to the question, we have to find the value of limx023x3xsin3x\mathop {\lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}}.
So, first of all we have to use the L hospital’s rule because as we see that at limx0\mathop {\lim }\limits_{x \to 0} the numerator and denominator of the given question equals to zero.
So, first of all we have to understand the L'hospital's rule with the help of the example which is explained below.
L'hospital's rule: This rule tells us that if we have an intermediate form 0/0 or /\infty /\infty all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.
For example: Suppose that we have one of the following cases,
limxaf(x)g(x)=00\mathop { \Rightarrow \lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{0}{0} OR limxaf(x)g(x)=±±\mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{ \pm \infty }}{{ \pm \infty }}
Where aa can be any real number, infinity or negative infinity. In these cases we have to differentiate the numerator and differentiate the denominator both and then take the limit.

Complete step-by-step answer:
Step 1: First of all we have to check that at limx0\mathop {\lim }\limits_{x \to 0} the numerator and denominator of the given question equals zero or not.
limx023x3xsin3x 23(0)30sin3(0) 2030sin(0)  \mathop { \Rightarrow \lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}} \\\ \Rightarrow \dfrac{{{2^{3(0)}} - {3^0}}}{{\sin 3(0)}} \\\ \Rightarrow \dfrac{{{2^0} - {3^0}}}{{\sin (0)}} \\\
As we know that, if any number has power to 0 then its value equal to 1 and sin(0)=0\sin (0) = 0
110 00.....................................(1)  \Rightarrow \dfrac{{1 - 1}}{0} \\\ \Rightarrow \dfrac{0}{0}.....................................(1) \\\
Step 2: As we see that in expression (1) in the solution step 1 the functions are in the form 0/0.
Now, we have to use the L hospital’s rule which is mentioned in the solution hint.
limx023x3xsin3x limx08x3xsin3x. .limx023x3xsin3x limx0ddx(8x)ddx(3x)ddx(sin3x)........................(2)  \mathop { \Rightarrow \lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{8^x} - {3^x}}}{{\sin 3x}}. \\\ \Rightarrow .\mathop { \Rightarrow \lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}} \\\ \Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}({8^x}) - \dfrac{d}{{dx}}({3^x})}}{{\dfrac{d}{{dx}}(\sin 3x)}}........................(2) \\\

As we know that the differentiation of ax{a^x} is axlogea{a^x}{\log _e}a and differentiation of sinax\sin axis acos(ax)a\cos (ax)
Step 3: So, now we have to use the differentiation rules which are mentioned just above in the expression (2).
limx08xloge83xloge33cos3x\Rightarrow \mathop {\lim }\limits_{x \to 0} \dfrac{{{8^x}{{\log }_e}8 - {3^x}{{\log }_e}3}}{{3\cos 3x}}
Now, put limx0\mathop {\lim }\limits_{x \to 0} in the just above expression.
80loge830loge33cos3(0)\Rightarrow \dfrac{{{8^0}{{\log }_e}8 - {3^0}{{\log }_e}3}}{{3\cos 3(0)}}
As we know that, if any number has power to 0 then its value equal to 1 and cos(0)=1\cos (0) = 1

(1)loge8(1)loge33(1) loge8loge33....................(3)   \Rightarrow \dfrac{{(1){{\log }_e}8 - (1){{\log }_e}3}}{{3(1)}} \\\ \Rightarrow \dfrac{{{{\log }_e}8 - {{\log }_e}3}}{3}....................(3) \\\ \\\
Step 4: Now, we know thatlogmlogn=logmn\log m - \log n = \log \dfrac{m}{n}. So, apply this rule in the expression (3) of solution step (3).
loge8loge33 13log83  \Rightarrow \dfrac{{{{\log }_e}8 - {{\log }_e}3}}{3} \\\ \Rightarrow \dfrac{1}{3}\log \dfrac{8}{3} \\\

As we know that 1alogmn=log(mn)1a\dfrac{1}{a}\log \dfrac{m}{n} = \log {\left( {\dfrac{m}{n}} \right)^{\dfrac{1}{a}}}
log(83)13\Rightarrow \log {\left( {\dfrac{8}{3}} \right)^{\dfrac{1}{3}}}

Hence, the value for limx023x3xsin3x\mathop {\lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}} is log(83)13\log {\left( {\dfrac{8}{3}} \right)^{\dfrac{1}{3}}}.

Note:
It is necessary to check at limx0\mathop {\lim }\limits_{x \to 0} for the given expression limx023x3xsin3x\mathop {\lim }\limits_{x \to 0} \dfrac{{{2^{3x}} - {3^x}}}{{\sin 3x}} has numerator and denominator of the given expression equals to zero or not. It is necessary to apply the L hospital’s rule when the given expression has both numerator and denominator in the form of 00.\dfrac{0}{0}.