Solveeit Logo

Question

Question: Determine the solution of the differential equation: $\frac{dy}{dx} = \frac{y}{1+x}$...

Determine the solution of the differential equation:

dydx=y1+x\frac{dy}{dx} = \frac{y}{1+x}

Answer

y = C(1+x)

Explanation

Solution

The differential equation is solved by separating variables, integrating both sides, and then solving for yy.

  1. Separate yy and xx terms: dyy=dx1+x\frac{dy}{y} = \frac{dx}{1+x}.

  2. Integrate both sides: dyy=dx1+x    lny=ln1+x+C\int \frac{dy}{y} = \int \frac{dx}{1+x} \implies \ln|y| = \ln|1+x| + C'.

  3. Exponentiate to solve for yy: y=eln1+x+C=eC(1+x)y = e^{\ln|1+x| + C'} = e^{C'} \cdot (1+x).

  4. Let eC=Ce^{C'} = C: y=C(1+x)y = C(1+x).

The solution of the differential equation is y=C(1+x)y = C(1+x).