Solveeit Logo

Question

Question: Determine the rms value of a semi-circular current wave which has a maximum value of a...

Determine the rms value of a semi-circular current wave which has a maximum value of a

A

(1/3\sqrt{3})a

B

(3/2)\sqrt{(3/2)}a

C

(2/3)\sqrt{(2/3)}a

D

(1/2\sqrt{2})a

Answer

(2/3)\sqrt{(2/3)}a

Explanation

Solution

The root mean square (RMS) value of a current I(t)I(t) over a time interval TT is given by: Irms=1T0TI(t)2dtI_{rms} = \sqrt{\frac{1}{T} \int_0^T I(t)^2 dt} For a semi-circular current wave with maximum value 'a', the current can be described by I(t)=a2t2I(t) = \sqrt{a^2 - t^2} for ata-a \le t \le a. The duration of this cycle is T=2aT = 2a.

The RMS value is calculated as: Irms2=12aaa(a2t2)2dtI_{rms}^2 = \frac{1}{2a} \int_{-a}^{a} (\sqrt{a^2 - t^2})^2 dt Irms2=12aaa(a2t2)dtI_{rms}^2 = \frac{1}{2a} \int_{-a}^{a} (a^2 - t^2) dt Evaluating the integral: aa(a2t2)dt=[a2tt33]aa=(a3a33)(a3+a33)=2a33(2a33)=4a33\int_{-a}^{a} (a^2 - t^2) dt = \left[ a^2t - \frac{t^3}{3} \right]_{-a}^{a} = \left( a^3 - \frac{a^3}{3} \right) - \left( -a^3 + \frac{a^3}{3} \right) = \frac{2a^3}{3} - \left( -\frac{2a^3}{3} \right) = \frac{4a^3}{3} Substituting back: Irms2=12a4a33=2a23I_{rms}^2 = \frac{1}{2a} \cdot \frac{4a^3}{3} = \frac{2a^2}{3} Taking the square root: Irms=2a23=a23I_{rms} = \sqrt{\frac{2a^2}{3}} = a \sqrt{\frac{2}{3}}