Solveeit Logo

Question

Question: Determine the points of maxima and minima of the function \(f\left( x \right) = \dfrac{1}{8}\ln x - ...

Determine the points of maxima and minima of the function f(x)=18lnxbx+x2,x>0f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0, where b0b \geqslant 0 is a constant.
(a)min.at x=14(b+b21), max at x=14(bb21)\left( a \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right)
(b)min.at x=14(bb21), max at x=14(b+b21)\left( b \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right)
(c)min.at x=14(b+b2+1), max at x=14(bb21)\left( c \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} + 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} - 1} } \right)
(d)min.at x=14(b+b21), max at x=14(bb2+1)\left( d \right){\text{min}}{\text{.at }}x = \dfrac{1}{4}\left( {b + \sqrt {{b^2} - 1} } \right),{\text{ max at }}x = \dfrac{1}{4}\left( {b - \sqrt {{b^2} + 1} } \right)

Explanation

Solution

In this particular question to find the maxima and minima differentiate the given function w.r.t x and equate to solve and solve for x, then again differentiate the given function and calculate its value on previous calculated x value if we got positive than it is a minima and if we got negative than it is a maxima so use these concepts to reach the solution of the question.

Complete step by step answer:
Given function.
f(x)=18lnxbx+x2,x>0f\left( x \right) = \dfrac{1}{8}\ln x - bx + {x^2},x > 0
Now differentiate this function w.r.t x and equate to zero we have,
ddxf(x)=f(x)=ddx(18lnxbx+x2)=0\Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{8}\ln x - bx + {x^2}} \right) = 0
Now as we know that ddxlnx=1x,ddxxn=nxn1\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}, so use this property in the above equation we have,
(18xb+2x)=0\Rightarrow \left( {\dfrac{1}{{8x}} - b + 2x} \right) = 0
18bx+16x2=0\Rightarrow 1 - 8bx + 16{x^2} = 0
16x28bx+1=0\Rightarrow 16{x^2} - 8bx + 1 = 0
Now this is a quadratic equation so apply quadratic formula we have,
x=b±b24ac2a\Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}, where a = 16, b = -8b, c = 1
x=8b±(8b)24(16)2(16)\Rightarrow x = \dfrac{{8b \pm \sqrt {{{\left( { - 8b} \right)}^2} - 4\left( {16} \right)} }}{{2\left( {16} \right)}}
x=8b±64b26432=8b±8b2132=b±b214\Rightarrow x = \dfrac{{8b \pm \sqrt {64{b^2} - 64} }}{{32}} = \dfrac{{8b \pm 8\sqrt {{b^2} - 1} }}{{32}} = \dfrac{{b \pm \sqrt {{b^2} - 1} }}{4}
x=b+b214,bb214\Rightarrow x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4},\dfrac{{b - \sqrt {{b^2} - 1} }}{4}
So as we see that b should never be less than one other the above values of x will become complex.
Therefore b \geqslant 1.
Now again differentiate the function w.r.t x we have,
ddxf(x)=f(x)=ddx(18xb+2x)\Rightarrow \dfrac{d}{{dx}}f'\left( x \right) = f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{1}{{8x}} - b + 2x} \right)
f(x)=ddx(x18b+2x)\Rightarrow f''\left( x \right) = \dfrac{d}{{dx}}\left( {\dfrac{{{x^{ - 1}}}}{8} - b + 2x} \right)
f(x)=(1x118+2)\Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1{x^{ - 1 - 1}}}}{8} + 2} \right), as the differentiation of constant term is zero.
f(x)=(18x2+2)\Rightarrow f''\left( x \right) = \left( {\dfrac{{ - 1}}{{8{x^2}}} + 2} \right)
Now when, x=b+b214x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4} so the value of f” (x) is
f(x)=18(b+b214)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b + \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2
Now simplify we have,
f(x)=168(b+b21)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2
f(x)=2(b+b21)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2
As b \geqslant 1 so the value of (b+b21)\left( {b + \sqrt {{b^2} - 1} } \right) when b = 1 is 1
f(x)=2(1)2+2=0\Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0
So at b = 1 function neither minima nor maxima.
So when, 1<b<21 < b < 2, the value of (b+b21)>1\left( {b + \sqrt {{b^2} - 1} } \right) > 1
2b+b21=2>1<2\Rightarrow \dfrac{2}{{b + \sqrt {{b^2} - 1} }} = \dfrac{2}{{ > 1}} < 2
f(x)=2(b+b21)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2 = positive.
So when, x=b+b214x = \dfrac{{b + \sqrt {{b^2} - 1} }}{4} the given function is at minimum position.
Now when, x=bb214x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4} so the value of f” (x) is
f(x)=18(bb214)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 1}}{{8{{\left( {\dfrac{{b - \sqrt {{b^2} - 1} }}{4}} \right)}^2}}} + 2
Now simplify we have,
f(x)=168(bb21)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 16}}{{8{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2
f(x)=2(bb21)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b - \sqrt {{b^2} - 1} } \right)}^2}}} + 2
As b \geqslant 1 so the value of (bb21)\left( {b - \sqrt {{b^2} - 1} } \right) when b = 1 is 1
f(x)=2(1)2+2=0\Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( 1 \right)}^2}}} + 2 = 0
So at b = 1 function neither minima nor maxima.
So when, 1<b<21 < b < 2, the value of (bb21)<1\left( {b - \sqrt {{b^2} - 1} } \right) < 1
2bb21=2<1>2\Rightarrow \dfrac{2}{{b - \sqrt {{b^2} - 1} }} = \dfrac{2}{{ < 1}} > 2
f(x)=2(b+b21)2+2\Rightarrow f''\left( x \right) = \dfrac{{ - 2}}{{{{\left( {b + \sqrt {{b^2} - 1} } \right)}^2}}} + 2 = negative.
So when, x=bb214x = \dfrac{{b - \sqrt {{b^2} - 1} }}{4} the given function is at maximum position.
So this is the required answer.

So, the correct answer is “Option A”.

Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation properties such as ddxlnx=1x,ddxxn=nxn1\dfrac{d}{{dx}}\ln x = \dfrac{1}{x},\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} so differentiate the given function according to these properties as above.