Solveeit Logo

Question

Question: Determine the osmotic pressure of a solution prepared by dissolving \(2.5 \times {10^{ - 2}}{\text{ ...

Determine the osmotic pressure of a solution prepared by dissolving 2.5×102 g2.5 \times {10^{ - 2}}{\text{ g}} of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} in 2 L{\text{2 L}} of water at 25C{25^ \circ }{\text{C}} assuming that it is completely dissociated.
(R=0.0821 L atm K1 mol1{\text{R}} = 0.0821{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}}, Molar mass of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} =174 g mol1 = 174{\text{ g mo}}{{\text{l}}^{ - 1}})

Explanation

Solution

The pressure applied to a pure solvent so that it does not pass into the given solution by osmosis is known as the osmotic pressure. K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} dissociates into two potassium cations and one sulphate anion.

Formula Used: Number of moles (mol)=Mass (g)Molar mass (g mol1){\text{Number of moles (mol)}} = \dfrac{{{\text{Mass (g)}}}}{{{\text{Molar mass (g mo}}{{\text{l}}^{ - 1}})}}
π=i×nV×RT\pi = i \times \dfrac{n}{V} \times RT

Complete step by step answer:
Calculate the number of moles of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} using the equation as follows:
Number of moles (mol)=Mass (g)Molar mass (g mol1){\text{Number of moles (mol)}} = \dfrac{{{\text{Mass (g)}}}}{{{\text{Molar mass (g mo}}{{\text{l}}^{ - 1}})}}
Substitute 2.5×102 g2.5 \times {10^{ - 2}}{\text{ g}} for the mass of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}, 174 g mol1174{\text{ g mo}}{{\text{l}}^{ - 1}} for the molar mass of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}. Thus,
Number of moles of K2SO4=2.5×102 g174 g mol1{\text{Number of moles of }}{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} = \dfrac{{2.5 \times {{10}^{ - 2}}{\text{ g}}}}{{174{\text{ g mo}}{{\text{l}}^{ - 1}}}}
Number of moles of K2SO4=1.43×104 mol{\text{Number of moles of }}{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} = 1.43 \times {10^{ - 4}}{\text{ mol}}
Thus, the number of moles of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}are 1.43×104 mol1.43 \times {10^{ - 4}}{\text{ mol}}.
Calculate the van’t Hoff factor for K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} as follows:
The number of individual ions and ionic solid dissociates is known as the van't Hoff factor.
K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} dissociates into two potassium cations and one sulphate anion. Thus, the van’t Hoff factor for K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} is 3{\text{3}}.
Calculate the osmotic pressure of the solution using the equation as follows:
π=i×nV×RT\pi = i \times \dfrac{n}{V} \times RT
Where, π\pi is the osmotic pressure,
n is the number of moles of solute,
V is the volume of the final solution in litres,
R is the universal gas constant,
T is the temperature in kelvin,
‘i’ is the van’t Hoff factor of the solute.
Substitute 1.43×104 mol1.43 \times {10^{ - 4}}{\text{ mol}} for the number of moles of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}, 2 L{\text{2 L}} for the volume of the water, 0.0821 L atm K1 mol10.0821{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} for the universal gas constant, 25C+273=298 K{25^ \circ }{\text{C}} + 273 = 298{\text{ K}} for the temperature, 3{\text{3}} for the van’t Hoff factor of K2SO4{{\text{K}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}. Thus,
π=3×1.43×104 mol2 L×0.0821 L atm K1 mol1×298 K\pi = 3 \times \dfrac{{1.43 \times {{10}^{ - 4}}{\text{ mol}}}}{{{\text{2 L}}}} \times 0.0821{\text{ L atm }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} \times 298{\text{ K}}
π=5.24×103 atm\pi = 5.24 \times {10^{ - 3}}{\text{ atm}}
Thus, the osmotic pressure of the solution is 5.24×103 atm5.24 \times {10^{ - 3}}{\text{ atm}}.

Note: Do not use the temperature value in C^ \circ {\text{C}}. Convert the temperature fromC^ \circ {\text{C}} to K{\text{K}} using the relation that 0C=274 K{0^ \circ }{\text{C}} = 274{\text{ K}}. Calculate the number of moles of the solute using the relation that the number of moles is the ratio of mass to molar mass.