Question
Question: Determine the integration \(\int {{{\operatorname{Sec} }^{4/3}}} x.\cos e{c^{8/3}}xdx\) is equal to ...
Determine the integration ∫Sec4/3x.cosec8/3xdx is equal to
A. −53tan−8/3x+3tan−2/3x+C
B. −53tan−5/3x+3tan1/3x+C
C. 53tan−8/3x+3tan−2/3x+C
Solution
First of all we have to determine the integration ∫Sec4/3x.cosec8/3xdx. First of all we have to change the secx and cosecx into the cosx and sinx respectively. With the help of the formula below:
Formula used:
secx= Cosx1and cosecx= sinx1
Now, we have to multiply by cos4x in the numerator and denominator to convert sinx into tanx by using the formula below:
Formula used:
CosxSinx=tanx
Now, we have to let t be equal to the tanx and then we have to differentiate this function with respect to t from both sides to get the dx function into the dt function.
Now, finally we have to integrate that dt function with respect to t to obtain the desired answer.
Complete step by step answer:
First of all we have to let the given integration equal to I as mentioned below:
I=∫Sec4/3x.cosec8/3xdx
Now, we convert secx and cosecx into the cosx and sinx respectively. With the help of the formula below:
Formula used:
secx= Cosx1and cosecx= sinx1
So, We get:
⇒I=∫cos4/3x.sin8/3x1dx
\Rightarrow I = \int {\dfrac{{{{\sec }^4}x}}{{\dfrac{{{{\sin }^{8/3}}x}}{{{{\cos }^{ - 4/3}}x{{\cos }^4}x}}}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{\dfrac{{{{\sin }^{8/3}}x}}{{{{\cos }^{8/3}}x}}}}} dx \\
\Rightarrow I = \int {\dfrac{{{{\sec }^2}x.{{\sec }^2}x}}{{{{\tan }^{8/3}}x}}} dx \\
\Rightarrow I = \int {\dfrac{{(1 + {\operatorname{t} ^2})}}{{{t^{8/3}}}}} dt \\
\Rightarrow I = \int {(\dfrac{1}{{{t^{8/3}}}}} + \dfrac{{{t^2}}}{{{t^{8/3}}}})dt \\
\Rightarrow I = \int {\dfrac{1}{{{t^{8/3}}}}} dt + \int {\dfrac{{{t^2}}}{{{t^{8/3}}}}dt} \\
\Rightarrow I = \int {{t^{ - 8/3}}} dt + \int {{t^{ - 2/3}}dt} \\
\\
\\
\Rightarrow I = \dfrac{{{t^{ - 8/3 + 1}}}}{{ - 8/3 + 1}} + \dfrac{{{t^{ - 2/3 + 1}}}}{{ - 2/3 + 1}} + C \\
\Rightarrow I = \dfrac{{{t^{ - 5/3}}}}{{ - 5/3}} + \dfrac{{{t^{1/3}}}}{{1/3}} + C \\
\Rightarrow I = - \dfrac{3}{5}{t^{ - 5/3}} + 3{t^{1/3}} + C....................(2) \\
\\