Solveeit Logo

Question

Question: Determine the Eigen Values and Eigen Vectors of the matrix $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -...

Determine the Eigen Values and Eigen Vectors of the matrix A=[3105234357]A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}

Answer

Eigenvalues: λ=2 (multiplicity 2), λ=3. Eigenvectors: For λ=3, x_1 = \begin{bmatrix} 1 \ 1 \ -2 \end{bmatrix}. For λ=2, x_2 = \begin{bmatrix} 5 \ 2 \ -5 \end{bmatrix}.

Explanation

Solution

To determine the eigenvalues and eigenvectors of the matrix A=[3105234357]A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}, we follow these steps:

1. Determine Eigenvalues: The eigenvalues λ\lambda are found by solving the characteristic equation det(AλI)=0det(A - \lambda I) = 0. AλI=[3λ10523λ4357λ]A - \lambda I = \begin{bmatrix} 3-\lambda & 10 & 5 \\ -2 & -3-\lambda & -4 \\ 3 & 5 & 7-\lambda \end{bmatrix}

Calculate the determinant: det(AλI)=(3λ)[(3λ)(7λ)(5)(4)]10[(2)(7λ)(3)(4)]+5[(2)(5)(3)(3λ)]det(A - \lambda I) = (3-\lambda)[(-3-\lambda)(7-\lambda) - (5)(-4)] - 10[(-2)(7-\lambda) - (3)(-4)] + 5[(-2)(5) - (3)(-3-\lambda)] =(3λ)[λ24λ21+20]10[14+2λ+12]+5[10+9+3λ]= (3-\lambda)[\lambda^2 - 4\lambda - 21 + 20] - 10[-14 + 2\lambda + 12] + 5[-10 + 9 + 3\lambda] =(3λ)[λ24λ1]10[2λ2]+5[3λ1]= (3-\lambda)[\lambda^2 - 4\lambda - 1] - 10[2\lambda - 2] + 5[3\lambda - 1] =(3λ212λ3λ3+4λ2+λ)(20λ20)+(15λ5)= (3\lambda^2 - 12\lambda - 3 - \lambda^3 + 4\lambda^2 + \lambda) - (20\lambda - 20) + (15\lambda - 5) =λ3+(3+4)λ2+(12+120+15)λ+(3+205)= -\lambda^3 + (3+4)\lambda^2 + (-12+1-20+15)\lambda + (-3+20-5) =λ3+7λ216λ+12= -\lambda^3 + 7\lambda^2 - 16\lambda + 12

Set the characteristic polynomial to zero: λ3+7λ216λ+12=0-\lambda^3 + 7\lambda^2 - 16\lambda + 12 = 0 λ37λ2+16λ12=0\lambda^3 - 7\lambda^2 + 16\lambda - 12 = 0

By inspection, test integer factors of 12: For λ=2\lambda = 2: 237(22)+16(2)12=828+3212=4040=02^3 - 7(2^2) + 16(2) - 12 = 8 - 28 + 32 - 12 = 40 - 40 = 0. So λ=2\lambda = 2 is an eigenvalue. Divide the polynomial by (λ2)(\lambda - 2) using synthetic division:

2 | 1  -7   16  -12
  |    2  -10   12
  ------------------
    1  -5    6    0

The depressed polynomial is λ25λ+6=0\lambda^2 - 5\lambda + 6 = 0. Factoring this quadratic equation: (λ2)(λ3)=0(\lambda - 2)(\lambda - 3) = 0. So, the roots are λ=2\lambda = 2 and λ=3\lambda = 3.

Thus, the eigenvalues of the matrix A are λ1=2\lambda_1 = 2 (with algebraic multiplicity 2) and λ2=3\lambda_2 = 3.

2. Determine Eigenvectors: For each eigenvalue λ\lambda, we solve the equation (AλI)x=0(A - \lambda I)x = 0 for the eigenvector xx.

Case 1: For λ=3\lambda = 3 Substitute λ=3\lambda = 3 into (AλI)x=0(A - \lambda I)x = 0: [3310523343573][x1x2x3]=[000]\begin{bmatrix} 3-3 & 10 & 5 \\ -2 & -3-3 & -4 \\ 3 & 5 & 7-3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} [0105264354][x1x2x3]=[000]\begin{bmatrix} 0 & 10 & 5 \\ -2 & -6 & -4 \\ 3 & 5 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

From the first row: 10x2+5x3=0    2x2+x3=0    x3=2x210x_2 + 5x_3 = 0 \implies 2x_2 + x_3 = 0 \implies x_3 = -2x_2. From the second row: 2x16x24x3=0    x1+3x2+2x3=0-2x_1 - 6x_2 - 4x_3 = 0 \implies x_1 + 3x_2 + 2x_3 = 0. Substitute x3=2x2x_3 = -2x_2 into the second equation: x1+3x2+2(2x2)=0x_1 + 3x_2 + 2(-2x_2) = 0 x1+3x24x2=0x_1 + 3x_2 - 4x_2 = 0 x1x2=0    x1=x2x_1 - x_2 = 0 \implies x_1 = x_2.

Let x2=kx_2 = k (where kk is a non-zero scalar). Then x1=kx_1 = k and x3=2kx_3 = -2k. The eigenvector for λ=3\lambda = 3 is x=k[112]x = k \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}. Choosing k=1k=1, a valid eigenvector is [112]\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}.

Case 2: For λ=2\lambda = 2 Substitute λ=2\lambda = 2 into (AλI)x=0(A - \lambda I)x = 0: [3210523243572][x1x2x3]=[000]\begin{bmatrix} 3-2 & 10 & 5 \\ -2 & -3-2 & -4 \\ 3 & 5 & 7-2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} [1105254355][x1x2x3]=[000]\begin{bmatrix} 1 & 10 & 5 \\ -2 & -5 & -4 \\ 3 & 5 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}

Perform row operations to simplify the matrix: R2R2+2R1R_2 \to R_2 + 2R_1: [11050156355]\begin{bmatrix} 1 & 10 & 5 \\ 0 & 15 & 6 \\ 3 & 5 & 5 \end{bmatrix} R3R33R1R_3 \to R_3 - 3R_1: [1105015602510]\begin{bmatrix} 1 & 10 & 5 \\ 0 & 15 & 6 \\ 0 & -25 & -10 \end{bmatrix}

From the second row: 15x2+6x3=0    5x2+2x3=0    x3=52x215x_2 + 6x_3 = 0 \implies 5x_2 + 2x_3 = 0 \implies x_3 = -\frac{5}{2}x_2. From the first row: x1+10x2+5x3=0x_1 + 10x_2 + 5x_3 = 0. Substitute x3=52x2x_3 = -\frac{5}{2}x_2 into the first equation: x1+10x2+5(52x2)=0x_1 + 10x_2 + 5(-\frac{5}{2}x_2) = 0 x1+10x2252x2=0x_1 + 10x_2 - \frac{25}{2}x_2 = 0 x1+(20252)x2=0x_1 + (\frac{20-25}{2})x_2 = 0 x152x2=0    x1=52x2x_1 - \frac{5}{2}x_2 = 0 \implies x_1 = \frac{5}{2}x_2.

Let x2=2kx_2 = 2k' (where kk' is a non-zero scalar, chosen to avoid fractions). Then x1=52(2k)=5kx_1 = \frac{5}{2}(2k') = 5k' and x3=52(2k)=5kx_3 = -\frac{5}{2}(2k') = -5k'. The eigenvector for λ=2\lambda = 2 is x=k[525]x = k' \begin{bmatrix} 5 \\ 2 \\ -5 \end{bmatrix}. Choosing k=1k'=1, a valid eigenvector is [525]\begin{bmatrix} 5 \\ 2 \\ -5 \end{bmatrix}.

Note: The algebraic multiplicity of λ=2\lambda = 2 is 2, but its geometric multiplicity (number of linearly independent eigenvectors) is 1. This means the matrix is not diagonalizable.