Question
Question: Determine the Eigen Values and Eigen Vectors of the matrix $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -...
Determine the Eigen Values and Eigen Vectors of the matrix A=3−2310−355−47

Eigenvalues: λ=2 (multiplicity 2), λ=3. Eigenvectors: For λ=3, x_1 = \begin{bmatrix} 1 \ 1 \ -2 \end{bmatrix}. For λ=2, x_2 = \begin{bmatrix} 5 \ 2 \ -5 \end{bmatrix}.
Solution
To determine the eigenvalues and eigenvectors of the matrix A=3−2310−355−47, we follow these steps:
1. Determine Eigenvalues: The eigenvalues λ are found by solving the characteristic equation det(A−λI)=0. A−λI=3−λ−2310−3−λ55−47−λ
Calculate the determinant: det(A−λI)=(3−λ)[(−3−λ)(7−λ)−(5)(−4)]−10[(−2)(7−λ)−(3)(−4)]+5[(−2)(5)−(3)(−3−λ)] =(3−λ)[λ2−4λ−21+20]−10[−14+2λ+12]+5[−10+9+3λ] =(3−λ)[λ2−4λ−1]−10[2λ−2]+5[3λ−1] =(3λ2−12λ−3−λ3+4λ2+λ)−(20λ−20)+(15λ−5) =−λ3+(3+4)λ2+(−12+1−20+15)λ+(−3+20−5) =−λ3+7λ2−16λ+12
Set the characteristic polynomial to zero: −λ3+7λ2−16λ+12=0 λ3−7λ2+16λ−12=0
By inspection, test integer factors of 12: For λ=2: 23−7(22)+16(2)−12=8−28+32−12=40−40=0. So λ=2 is an eigenvalue. Divide the polynomial by (λ−2) using synthetic division:
2 | 1 -7 16 -12
| 2 -10 12
------------------
1 -5 6 0
The depressed polynomial is λ2−5λ+6=0. Factoring this quadratic equation: (λ−2)(λ−3)=0. So, the roots are λ=2 and λ=3.
Thus, the eigenvalues of the matrix A are λ1=2 (with algebraic multiplicity 2) and λ2=3.
2. Determine Eigenvectors: For each eigenvalue λ, we solve the equation (A−λI)x=0 for the eigenvector x.
Case 1: For λ=3 Substitute λ=3 into (A−λI)x=0: 3−3−2310−3−355−47−3x1x2x3=000 0−2310−655−44x1x2x3=000
From the first row: 10x2+5x3=0⟹2x2+x3=0⟹x3=−2x2. From the second row: −2x1−6x2−4x3=0⟹x1+3x2+2x3=0. Substitute x3=−2x2 into the second equation: x1+3x2+2(−2x2)=0 x1+3x2−4x2=0 x1−x2=0⟹x1=x2.
Let x2=k (where k is a non-zero scalar). Then x1=k and x3=−2k. The eigenvector for λ=3 is x=k11−2. Choosing k=1, a valid eigenvector is 11−2.
Case 2: For λ=2 Substitute λ=2 into (A−λI)x=0: 3−2−2310−3−255−47−2x1x2x3=000 1−2310−555−45x1x2x3=000
Perform row operations to simplify the matrix: R2→R2+2R1: 10310155565 R3→R3−3R1: 1001015−2556−10
From the second row: 15x2+6x3=0⟹5x2+2x3=0⟹x3=−25x2. From the first row: x1+10x2+5x3=0. Substitute x3=−25x2 into the first equation: x1+10x2+5(−25x2)=0 x1+10x2−225x2=0 x1+(220−25)x2=0 x1−25x2=0⟹x1=25x2.
Let x2=2k′ (where k′ is a non-zero scalar, chosen to avoid fractions). Then x1=25(2k′)=5k′ and x3=−25(2k′)=−5k′. The eigenvector for λ=2 is x=k′52−5. Choosing k′=1, a valid eigenvector is 52−5.
Note: The algebraic multiplicity of λ=2 is 2, but its geometric multiplicity (number of linearly independent eigenvectors) is 1. This means the matrix is not diagonalizable.