Solveeit Logo

Question

Question: Determine the area under the curve \(y=\sqrt{{{a}^{2}}-{{x}^{2}}}\), included between the lines x= 0...

Determine the area under the curve y=a2x2y=\sqrt{{{a}^{2}}-{{x}^{2}}}, included between the lines x= 0 and x= 4

Explanation

Solution

Hint: Find the area in two different cases. When a is less than 4 and when a is greater or equal to 4. Observe that when a is less than 4, the whole curve in the domain x=0 to x= a will be included and the abscissae after x=a will be out from the domain. When a is greater or equal to 4, the whole curve in the domain x=0 to x= 4 will be included. Use the fact that the area of the region bounded by the curve y=f(x), the x-axis and the ordinates x=a and x=b is given by A=abf(x)dxA=\int_{a}^{b}{\left| f\left( x \right) \right|dx}. Hence find the required area in the two different cases.

Complete step-by-step answer:
The above question can be solved in two cases:
Case I a4a\le 4:

In the figure C(0,0),B(a,0)C\equiv \left( 0,0 \right),B\equiv \left( a,0 \right) and D(4,0)D\equiv \left( 4,0 \right)
When a4a\le 4, we have x(a,4]x\in \left( a,4 \right] i.e. from B to D will be outside the domain. Hence when finding the area bounded by the curve y=a2x2y=\sqrt{{{a}^{2}}-{{x}^{2}}} , the x-axis and the ordinates x= 0 and x= 4, we will include the whole curve between x= 0 and x= a., i.e. the area of the region ABCA.
Hence the area will be the area bounded by y=a2x2y=\sqrt{{{a}^{2}}-{{x}^{2}}}, the x-axis and the ordinates x= 0 and x =a
We know that the area of the region bounded by the curve y=f(x), the x-axis and the ordinates x=a and x=b is given by A=abf(x)dxA=\int_{a}^{b}{\left| f\left( x \right) \right|dx}.
Hence, we have A=0aa2x2dxA=\int_{0}^{a}{\left| \sqrt{{{a}^{2}}-{{x}^{2}}} \right|dx}
Since x0\sqrt{x}\ge 0, we have
A=0aa2x2dxA=\int_{0}^{a}{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}
Put x=asintx=a\sin t
Differentiating both sides with respect to t, we get
dx=acostdtdx=a\cos tdt
When x= 0, we have asint=0t=0a\sin t=0\Rightarrow t=0
When x= a, we have asint=aa=π2a\sin t=a\Rightarrow a=\dfrac{\pi }{2}
Hence, we have A=0aa2a2sin2tacostdt=0π2a2cos2tdtA=\int_{0}^{a}{\sqrt{{{a}^{2}}-{{a}^{2}}{{\sin }^{2}}t}a\cos tdt}=\int_{0}^{\dfrac{\pi }{2}}{{{a}^{2}}{{\cos }^{2}}tdt}
Now, we know that cos2tdt=1+cos2t2dt=t2+sin2t4+C\int{{{\cos }^{2}}tdt=\int{\dfrac{1+\cos 2t}{2}dt=\dfrac{t}{2}+\dfrac{\sin 2t}{4}+C}}
Hence, we have
A=a2(t2+sin2t40π2)=πa24A={{a}^{2}}\left( \left. \dfrac{t}{2}+\dfrac{\sin 2t}{4} \right|_{0}^{\dfrac{\pi }{2}} \right)=\dfrac{\pi {{a}^{2}}}{4}
Case II: When a4a\ge 4

In this case, the required area is AEDCA, which is the area bounded by the curve y=a2x2y=\sqrt{{{a}^{2}}-{{x}^{2}}}, the x-axis and the ordinates x=0 and x=4
We know that the area of the region bounded by the curve y=f(x), the x-axis and the ordinates x=a and x=b is given by A=abf(x)dxA=\int_{a}^{b}{\left| f\left( x \right) \right|dx}.
Hence, we have
A=04a2x2A=\int_{0}^{4}{\sqrt{{{a}^{2}}-{{x}^{2}}}}
Put x=asintx=a\sin t
Differentiating both sides with respect to t, we get
dx=acostdtdx=a\cos tdt
When x= 0, we have asint=0t=0a\sin t=0\Rightarrow t=0
When x= 4, we have asint=4a=sin14aa\sin t=4\Rightarrow a={{\sin }^{-1}}\dfrac{4}{a}
Hence, we have
A=a20sin14acos2tA={{a}^{2}}\int_{0}^{{{\sin }^{-1}}\dfrac{4}{a}}{{{\cos }^{2}}t}
Now, we know that cos2tdt=1+cos2t2dt=t2+sin2t4+C\int{{{\cos }^{2}}tdt=\int{\dfrac{1+\cos 2t}{2}dt=\dfrac{t}{2}+\dfrac{\sin 2t}{4}+C}}
Hence, we have
A=a2(t2+sin2t40sin14a)=a2(sin14a2+sin(2sin14a)4)A={{a}^{2}}\left( \left. \dfrac{t}{2}+\dfrac{\sin 2t}{4} \right|_{0}^{{{\sin }^{-1}}\dfrac{4}{a}} \right)={{a}^{2}}\left( \dfrac{{{\sin }^{-1}}\dfrac{4}{a}}{2}+\dfrac{\sin \left( 2{{\sin }^{-1}}\dfrac{4}{a} \right)}{4} \right)
We know that sin(2x)=2sinxcosx\sin \left( 2x \right)=2\sin x\cos x
Hence, we have
sin(2sin1xa)=2sin(sin14a)cos(sin14a)\sin \left( 2{{\sin }^{-1}}\dfrac{x}{a} \right)=2\sin \left( {{\sin }^{-1}}\dfrac{4}{a} \right)\cos \left( {{\sin }^{-1}}\dfrac{4}{a} \right)
We know that cos(sin14a)=1(4a)2\cos \left( {{\sin }^{-1}}\dfrac{4}{a} \right)=\sqrt{1-{{\left( \dfrac{4}{a} \right)}^{2}}}
Hence, we have sin(2sin14a)=8a1(4a)2\sin \left( 2{{\sin }^{-1}}\dfrac{4}{a} \right)=\dfrac{8}{a}\sqrt{1-{{\left( \dfrac{4}{a} \right)}^{2}}}
Hence, we have
A=a2(sin14a2+8a1(2a)24)=a2(sin14a2+21(4a)2a)=a22sin14a+2a216A={{a}^{2}}\left( \dfrac{{{\sin }^{-1}}\dfrac{4}{a}}{2}+\dfrac{\dfrac{8}{a}\sqrt{1-{{\left( \dfrac{2}{a} \right)}^{2}}}}{4} \right)={{a}^{2}}\left( \dfrac{{{\sin }^{-1}}\dfrac{4}{a}}{2}+\dfrac{2\sqrt{1-{{\left( \dfrac{4}{a} \right)}^{2}}}}{a} \right)=\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{4}{a}+2\sqrt{{{a}^{2}}-16}
Note: Alternatively in case I, the value of A can be found by observing that it is the area of a quarter of a circle of radius and hence is equal to πa24\dfrac{\pi {{a}^{2}}}{4} and in the case II, the value of A can be found by using the property that a2x2dx=x2a2x2+a22sin1xa\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}}
Hence, we have
A=x2a2x2+a22sin1xa04=2a216+a22sin14aA=\left. \dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a} \right|_{0}^{4}=2\sqrt{{{a}^{2}}-16}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{4}{a}, which is the same as obtained above.