Solveeit Logo

Question

Mathematics Question on Probability

Determine P: A coin is tossed three times, where

  1. E: heads on third toss,F:heads on first two tosses.
  2. E: at least two heads,F:at most two heads.
  3. E: at most two tails,F:at least one tail.
Answer

A coin tossed three times, i.e., S = (TTT, HTT, THT, TTH, HHT, HTH, THH, HHH)
⇒ n(S)=8

(i) E: heads on third toss E=(TTH, HTH, THH, HHH)
⇒N(E)=4

P(E)=n(E)n(S)P(E)=\frac {n(E)}{n(S)} = 48\frac 48 =12\frac 12

F: heads on first two toss F=(HHT, HHH)
⇒ n(F)=2

P(F)=n(F)n(S)P(F)=\frac {n(F)}{n(S)} =28\frac 28 =14\frac 14

∴E∩F = (HHH)
⇒ n(E∩F) = 1

P(EF)=n(EF)n(S)=18P(E∩F)=\frac {n(E∩F)}{n(S)} =\frac 18

And, P(EF)=P(EF)P(F)=1/82/8=12P(E|F)=\frac {P(E∩F)}{P(F)} =\frac {1/8}{2/8} =\frac 12


(ii )E: at least two heads E=(HHT, HTH, THH, HHH)
⇒n(E)=4

P(E)=n(E)n(S)P(E)=\frac {n(E)}{n(S)} =48\frac 48 =12\frac 12

F: at most two heads F=(TTT, HTT, THT, TTH, HHT, HTH, THH)
⇒n(F)=7

P(F)=n(F)n(S)P(F)=\frac {n(F)}{n(S)} =78\frac 78

∴E∩F = (HHT, HTH, THH)
⇒n(E∩F) = 3

P(EF)=n(EF)n(S)∴P(E∩F) = \frac {n(E∩F)}{n(S)} =38\frac 38

And, P(EF)=P(EF)P(F)=3/87/8=37P(E|F)=\frac {P(E∩F)}{P(F)} =\frac {3/8}{7/8} =\frac 37


(iii)E: at most two tails E=(HTT,THT,TTH,HHT,HTH,THH,HHH)
⇒n(E)=7

P(E)=n(E)n(S)P(E)=\frac {n(E)}{n(S)} =78\frac 78

F:at least one tail F = (TTT, HTT, THT, TTH, HHT, HTH, THH)
⇒n(F)=7

P(F)=n(F)n(S)P(F)=\frac {n(F)}{n(S)} =78\frac 78

∴E∩F=(HTT, THT, TTH, HHT, HTH, THH)
⇒n(E∩F)=6

P(EF)=n(EF)n(S)P(E∩F)=\frac {n(E∩F)}{n(S)} =68\frac 68

And, P(EF)=n(EF)n(S)P(E∩F)=\frac {n(E∩F)}{n(S)}=6/87/8\frac {6/8}{7/8} =67\frac 67