Solveeit Logo

Question

Mathematics Question on Combinations

Determine n if
(i) 2nC3:nC3 = 12: 1
**(ii) **2nC3: nC3 = 11: 1

Answer

(i) 2nC3nC3=121\frac{^{2n}C_3}{^nC_3 }= \frac{12}{1}

(2n)!3!(2n3)!×3!(n3)!n!=121⇒\frac{\left(2n\right)!}{3!\left(2n-3\right)!}\times\frac{3!\left(n-3\right)!}{n!}=\frac{12}{1}

(2n)(2n1)(2n2)(2n3)!(2n3)!×(n3)!n(n1)(n2)(n3)!=12⇒\frac{\left(2n\right)\left(2n-1\right)\left(2n-2\right)\left(2n-3\right)!}{\left(2n-3\right)!}\times\frac{\left(n-3\right)!}{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}=12

2(2n1)(2n2)(n1)(n2)=12⇒\frac{2\left(2n-1\right)\left(2n-2\right)}{\left(n-1\right)\left(n-2\right)}=12

4(2n1)(n1)(n1)(n2)=12⇒\frac{4\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}=12

(2n1)(n2)=3⇒\frac{\left(2n-1\right)}{\left(n-2\right)}=3
2n1=3(n2)⇒2n-1=3\left(n-2\right)
2n1=3n6⇒2n-1=3n-6
3n2n=1+6⇒3n-2n=-1+6
n=5⇒n=5

**(ii) **2nC3nC3=111 \frac{^{2n}C_3}{^nC_3} = \frac{11}{1}

(2n)!3!(2n3)!×3!(n3)!n!=11⇒\frac{\left(2n\right)!}{3!\left(2n-3\right)!}\times\frac{3!\left(n-3\right)!}{n!}=11

(2n)(2n1)(2n2)(2n3)!(2n3)!×(n3)!n(n1)(n2)(n3)!=11⇒\frac{\left(2n\right)\left(2n-1\right)\left(2n-2\right)\left(2n-3\right)!}{\left(2n-3\right)!}\times\frac{\left(n-3\right)!}{n\left(n-1\right)\left(n-2\right)\left(n-3\right)!}=11

2(2n1)(n1)(n1)(n2)⇒\frac{2\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}

4(2n1)(n1)(n1)(n2)=11⇒\frac{4\left(2n-1\right)\left(n-1\right)}{\left(n-1\right)\left(n-2\right)}=11

4(2n1)n2=11⇒\frac{4\left(2n-1\right)}{n-2}=11
4(2n1)=11(n2)⇒4\left(2n-1\right)=11\left(n-2\right)
8n4=11n22⇒8n-4=11n-22
11n8n=4+22⇒11n-8n=-4+22
3n=18⇒3n=18
n=6⇒n=6