Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Determine if the points (1, 5), (2, 3) and (- 2, - 11) are collinear

Answer

Let the points (1, 5), (2, 3), and (−2, −11) be representing the vertices A, B, and C of the given triangle respectively.

Let, A=(1,5); B=(2, 3); C=(−2, −11)

\therefore AB=(12)2+(53)2=5\sqrt{(1-2)^2+(5-3)^2}=\sqrt5
BC=(2(2))2+(3(11))2=42+142=16+196=212\sqrt{(2-(-2))^2+(3-(-11))^2}=\sqrt{4^2+14^2}=\sqrt{16+196}=\sqrt{212}
CA=(1(2))2+(5(11))2=32+162=9+256=265\sqrt{(1-(-2))^2+(5-(-11))^2}=\sqrt{3^2+16^2}=\sqrt{9+256}=\sqrt{265}

Since, AB+BC\neqCA

Therefore, the points (1, 5), (2, 3), and (−2, −11) are not collinear.