Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Determine if f is defined by
f(x)=\left\\{\begin{matrix} x^2sin\frac{1}{x}, &if\,x\neq0 \\\ 0,&if\,x=0 \end{matrix}\right.
is a continuous function?

Answer

f(x)=\left\\{\begin{matrix} x^2sin\frac{1}{x}, &if\,x\neq0 \\\ 0,&if\,x=0 \end{matrix}\right.
It is evident that f is defined at all points of the real line.
Let c be a real number.

Case I:
If c≠0,then f(c)=c2sin1cc^2sin\frac{1}{c}
limxc\lim_{x\rightarrow c}f(x)=limxc\lim_{x\rightarrow c} (x2sin1xx^2sin\frac{1}{x}=(limxc\lim_{x\rightarrow c} x2)(limxc\lim_{x\rightarrow c} sin1x\frac{1}{x})=c2sin1c\frac{1}{c}
limxc\lim_{x\rightarrow c} f(x)=f(c)
Therefore,f is continuous at all points x, such that x≠0

Case II:
If c=0,then f(0)=0 and limx0\lim_{x\rightarrow 0^-}f(x)=limx0\lim_{x\rightarrow 0^-}(x2sin1xx^2sin\frac{1}{x})=limx0\lim_{x\rightarrow 0}(x2sin1xx^2sin\frac{1}{x})
It is known that -1≤sin1xsin\frac{1}{x}≤1, x≠0
\Rightarrow-x2≤ssin1xsin\frac{1}{x}≤x2
\Rightarrow$$\lim_{x\rightarrow 0}(-x2)≤limx0\lim_{x\rightarrow 0}(x2sin1xx^2sin\frac{1}{x})≤limx0\lim_{x\rightarrow 0}x2
\Rightarrow0≤limx0\lim_{x\rightarrow 0}(x2sin1xx^2sin\frac{1}{x})≤0
\Rightarrow$$\lim_{x\rightarrow 0}(x2sin1xx^2sin\frac{1}{x})=0
limx0\lim_{x\rightarrow 0^-} f(x)=0
Similarly,limx0+\lim_{x\rightarrow 0^+}f(x)=limx0+\lim_{x\rightarrow 0^+}(x2sin1xx^2sin\frac{1}{x})=limx0\lim_{x\rightarrow 0}(x2sin1xx^2sin\frac{1}{x})=0
limx0\lim_{x\rightarrow 0^-} f(x)=f(0)=limx0+\lim_{x\rightarrow 0^+}f(x)
Therefore,f is continuous at x=0
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus,f is a continuous function.