Question
Mathematics Question on Continuity and differentiability
Determine if f is defined by
f(x)=\left\\{\begin{matrix} x^2sin\frac{1}{x}, &if\,x\neq0 \\\ 0,&if\,x=0 \end{matrix}\right.
is a continuous function?
f(x)=\left\\{\begin{matrix} x^2sin\frac{1}{x}, &if\,x\neq0 \\\ 0,&if\,x=0 \end{matrix}\right.
It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
If c≠0,then f(c)=c2sinc1
limx→cf(x)=limx→c (x2sinx1=(limx→c x2)(limx→c sinx1)=c2sinc1
∴limx→c f(x)=f(c)
Therefore,f is continuous at all points x, such that x≠0
Case II:
If c=0,then f(0)=0 and limx→0−f(x)=limx→0−(x2sinx1)=limx→0(x2sinx1)
It is known that -1≤sinx1≤1, x≠0
⇒-x2≤ssinx1≤x2
\Rightarrow$$\lim_{x\rightarrow 0}(-x2)≤limx→0(x2sinx1)≤limx→0x2
⇒0≤limx→0(x2sinx1)≤0
\Rightarrow$$\lim_{x\rightarrow 0}(x2sinx1)=0
∴limx→0− f(x)=0
Similarly,limx→0+f(x)=limx→0+(x2sinx1)=limx→0(x2sinx1)=0
limx→0− f(x)=f(0)=limx→0+f(x)
Therefore,f is continuous at x=0
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus,f is a continuous function.