Solveeit Logo

Question

Question: Determine \(\Delta {\text{H}}\)for the following reaction at \(500\,{\text{K}}\)and constant pressur...

Determine ΔH\Delta {\text{H}}for the following reaction at 500K500\,{\text{K}}and constant pressure:
CO(g) + H2O(g)CO2(g) + H2(g){\text{CO}}\,{\text{(g)}}\,{\text{ + }}\,{{\text{H}}_{\text{2}}}{\text{O(g)}} \to \,{\text{C}}{{\text{O}}_2}\,{\text{(g)}}\,{\text{ + }}\,{{\text{H}}_{\text{2}}}{\text{(g)}}

Use the following data:

SubstanceCp{{\text{C}}_{\text{p}}}(J/mol K)ΔfH{\Delta _{\text{f}}}{\text{H}}(298K298\,{\text{K}}) (kJ/mol)
CO29.1229.12110.5\, - 110.5
H2O{{\text{H}}_{\text{2}}}{\text{O}}33.5833.58241.8 - 241.8
CO2{\text{C}}{{\text{O}}_{\text{2}}}37.1137.11393.5 - 393.5
H2{{\text{H}}_{\text{2}}}29.8929.890.0\,0.0

A. ΔH=30.3kJ\Delta {\text{H}}\, = \, - {\text{30}}{\text{.3}}\,{\text{kJ}}
B. ΔH=50.3kJ\Delta {\text{H}} = \, - 5{\text{0}}{\text{.3}}\,{\text{kJ}}
C. ΔH=40.3kJ\Delta {\text{H}}\, = \, - 4{\text{0}}{\text{.3}}\,{\text{kJ}}
D. ΔH=20.3kJ\Delta {\text{H}}\, = \, - 2{\text{0}}{\text{.3}}\,{\text{kJ}}

Explanation

Solution

Molar heat capacity is defined as the heat required to increase the temperature of one mole of a substance by1C1{\,^ \circ }{\text{C}} . If the same reaction occurs at two different temp and constant pressure and heat change at a temperature is given then we can determine the heat change at another temperature by using Kirchhoff’s equation.

Formula: ΔH=ΔCp(T2T1)\Delta {\text{H}} = \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)

Complete step-by-step answer: Kirchhoff’s equation relates heat change at two different temperatures.
The Kirchhoff’s equation is as follows:
ΔH=ΔCp(T2T1)\Delta {\text{H}} = \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)
Where,
ΔH\Delta {\text{H}}is the change in heat
ΔCp\Delta {{\text{C}}_{\text{p}}} is the molar heat capacity at constant pressure
T2{{\text{T}}_2}is the final temperature
T1{{\text{T}}_1}is the initial temperature
We will substitute the enthalpy at both temperature and rearrange the equation for enthalpy change at final temperature as follows:
ΔH2(T2)ΔH1(T1)=ΔCp(T2T1)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) - \Delta {{\text{H}}_1}\left( {{{\text{T}}_1}} \right) = \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)
ΔH2(T2)=ΔH1(T1)+ΔCp(T2T1)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \,\Delta {{\text{H}}_1}\left( {{{\text{T}}_1}} \right)\, + \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)…..(1)(1)
We will use the given molar heat capacities at constant P and 298K298\,{\text{K}}to determine the change in heat capacity as follows:
The formula to determine the change in heat capacity as follows:
ΔCp=Cp(products)Cp(reactants)\Delta {{\text{C}}_{\text{p}}} = \,\sum {{{\text{C}}_{\text{p}}}({\text{products)}}} \, - \,\sum {{{\text{C}}_{\text{p}}}({\text{reactants)}}}
Where,
Cp(products)\sum {{{\text{C}}_{\text{p}}}({\text{products)}}} \,is the summation of heat capacities of products
Cp(reactants)\sum {{{\text{C}}_{\text{p}}}({\text{reactants)}}} is the summation of heat capacities of products
For the given reactionΔCp\Delta {{\text{C}}_{\text{p}}}formula can be written as follows:
ΔCp=[1×Cp(CO2)+1×Cp(H2)][1×Cp(CO)+1×Cp(H2O)]\Delta {{\text{C}}_{\text{p}}} = \,\left[ {1\, \times {{\text{C}}_{\text{p}}}({\text{C}}{{\text{O}}_{\text{2}}}{\text{)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({{\text{H}}_{\text{2}}}{\text{)}}} \right] - \left[ {1\, \times {{\text{C}}_{\text{p}}}({\text{CO)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({{\text{H}}_{\text{2}}}{\text{O)}}} \right]
On substituting the values of molar heat capacities,
ΔCp=[1×Cp(33.11)+1×Cp(29.89)][1×Cp(29.12)+1×Cp(33.58)]\Delta {{\text{C}}_{\text{p}}} = \,\left[ {1\, \times {{\text{C}}_{\text{p}}}(33.11{\text{)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({\text{29}}{\text{.89)}}} \right] - \left[ {1\, \times {{\text{C}}_{\text{p}}}({\text{29}}{\text{.12)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({\text{33}}{\text{.58)}}} \right]
ΔCp=6762.7\Delta {{\text{C}}_{\text{p}}} = \,67 - 62.7
ΔCp=4.3J\Delta {{\text{C}}_{\text{p}}} = \,4.3\,{\text{J}}
Convert the ΔCp\Delta {{\text{C}}_{\text{p}}}from joule to kJ as follows:
1000J = 1kJ1000\,{\text{J}}\,{\text{ = }}\,{\text{1}}\,{\text{kJ}}
4.3J = 0.0043kJ4.3\,{\text{J = }}\,0.0043\,{\text{kJ}}
We will use the given molar heat capacities at constant P and 298K298\,{\text{K}}to determine the change in enthalpy as follows:
The formula to determine the change in enthalpy as follows:
ΔH1=ΔfH(products)ΔfH(reactants)\Delta {{\text{H}}_1} = \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \, - \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}}
Where,
ΔfH(products)\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \,is the summation of enthalpy of products
ΔfH(reactants)\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}} is the summation of enthalpy of products
For the given reactionΔH1\Delta {{\text{H}}_1}formula can be written as follows:
ΔH1=[1×ΔfH(CO2)+1×ΔfH(H2)][1×ΔfH(CO)+1×ΔfH(H2O)]\Delta {{\text{H}}_1} = \,\left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{C}}{{\text{O}}_{\text{2}}}{\text{)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}\,({{\text{H}}_{\text{2}}}{\text{)}}} \right] - \left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{CO)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}\,({{\text{H}}_{\text{2}}}{\text{O)}}} \right]
On substituting the values of ΔfH{\Delta _{\text{f}}}{\text{H}},
ΔfH=[1×ΔfH(393.5)+1×ΔfH(0.0)][1×ΔfH( - 110.5)+1×ΔfH( - 241.8)]{\Delta _{\text{f}}}{\text{H}} = \,\left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}( - 393.5{\text{)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}(0.0{\text{)}}} \right] - \left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}({\text{ - 110}}{\text{.5)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}({\text{ - 241}}{\text{.8)}}} \right]
ΔfH=393.5+352.3{\Delta _{\text{f}}}{\text{H}} = \, - 393.5\, + \,352.3
ΔfH=41.2kJ{\Delta _{\text{f}}}{\text{H}} = \, - 41.2\,\,{\text{kJ}}
Now substitute 41.2 - 41.2kJ forΔH1(T1)\Delta {{\text{H}}_1}\left( {{{\text{T}}_1}} \right), 0.0043kJ{\text{0}}{\text{.0043}}\,{\text{kJ}} for ΔCp\Delta {{\text{C}}_{\text{p}}}, 500K500\,{\text{K}}for T2{{\text{T}}_2}and 298K298\,{\text{K}}for T1{{\text{T}}_1}in equation(1)(1).
ΔH2(T2)=(41.2)+(0.0043)(500298)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \,\left( { - 41.2} \right)\, + \,\left( {{\text{0}}{\text{.0043}}} \right)\left( {500 - {\text{298}}} \right)
ΔH2(T2)=(41.2)+(0.8686)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \,\left( { - 41.2} \right)\, + \,\left( {0.8686} \right)
ΔH2(T2)=40.3kJ\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \, - 40.3\,{\text{kJ}}
So, the enthalpy change at 500K500\,{\text{K}}is 40.3kJ\, - 40.3\,{\text{kJ}}.
Kirchhoff’s equation relates heat change at two different temperatures.
The Kirchhoff’s equation is as follows:ΔH=ΔCp(T2T1)\Delta {\text{H}} = \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)
Where,
ΔH\Delta {\text{H}}is the change in heat
ΔCp\Delta {{\text{C}}_{\text{p}}} is the molar heat capacity at constant pressure
T2{{\text{T}}_2}is the final temperature
T1{{\text{T}}_1}is the initial temperature
We will substitute the enthalpy at both temperature and rearrange the equation for enthalpy change at final temperature as follows:
ΔH2(T2)ΔH1(T1)=ΔCp(T2T1)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) - \Delta {{\text{H}}_1}\left( {{{\text{T}}_1}} \right) = \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)
ΔH2(T2)=ΔH1(T1)+ΔCp(T2T1)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \,\Delta {{\text{H}}_1}\left( {{{\text{T}}_1}} \right)\, + \,\Delta {{\text{C}}_{\text{p}}}\left( {{{\text{T}}_2} - {{\text{T}}_{\text{1}}}} \right)…..(1)(1)
We will use the given molar heat capacities at constant P and 298K298\,{\text{K}}to determine the change in heat capacity as follows:
The formula to determine the change in heat capacity as follows:
ΔCp=Cp(products)Cp(reactants)\Delta {{\text{C}}_{\text{p}}} = \,\sum {{{\text{C}}_{\text{p}}}({\text{products)}}} \, - \,\sum {{{\text{C}}_{\text{p}}}({\text{reactants)}}}
Where,
Cp(products)\sum {{{\text{C}}_{\text{p}}}({\text{products)}}} \,is the summation of heat capacities of products
Cp(reactants)\sum {{{\text{C}}_{\text{p}}}({\text{reactants)}}} is the summation of heat capacities of products
For the given reactionΔCp\Delta {{\text{C}}_{\text{p}}}formula can be written as follows:
ΔCp=[1×Cp(CO2)+1×Cp(H2)][1×Cp(CO)+1×Cp(H2O)]\Delta {{\text{C}}_{\text{p}}} = \,\left[ {1\, \times {{\text{C}}_{\text{p}}}({\text{C}}{{\text{O}}_{\text{2}}}{\text{)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({{\text{H}}_{\text{2}}}{\text{)}}} \right] - \left[ {1\, \times {{\text{C}}_{\text{p}}}({\text{CO)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({{\text{H}}_{\text{2}}}{\text{O)}}} \right]
On substituting the values of molar heat capacities,
ΔCp=[1×Cp(33.11)+1×Cp(29.89)][1×Cp(29.12)+1×Cp(33.58)]\Delta {{\text{C}}_{\text{p}}} = \,\left[ {1\, \times {{\text{C}}_{\text{p}}}(33.11{\text{)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({\text{29}}{\text{.89)}}} \right] - \left[ {1\, \times {{\text{C}}_{\text{p}}}({\text{29}}{\text{.12)}} + \,1\,\, \times {{\text{C}}_{\text{p}}}({\text{33}}{\text{.58)}}} \right]
ΔCp=6762.7\Delta {{\text{C}}_{\text{p}}} = \,67 - 62.7
ΔCp=4.3J\Delta {{\text{C}}_{\text{p}}} = \,4.3\,{\text{J}}
Convert the ΔCp\Delta {{\text{C}}_{\text{p}}}from joule to kJ as follows:
1000J = 1kJ1000\,{\text{J}}\,{\text{ = }}\,{\text{1}}\,{\text{kJ}}
4.3J = 0.0043kJ4.3\,{\text{J = }}\,0.0043\,{\text{kJ}}
We will use the given molar heat capacities at constant P and 298K298\,{\text{K}}to determine the change in enthalpy as follows:
The formula to determine the change in enthalpy as follows:
ΔH1=ΔfH(products)ΔfH(reactants)\Delta {{\text{H}}_1} = \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \, - \,\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}}
Where,
ΔfH(products)\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{products)}}} \,is the summation of enthalpy of products
ΔfH(reactants)\sum {{\Delta _{\text{f}}}{\text{H}}\,({\text{reactants)}}} is the summation of enthalpy of products
For the given reactionΔH1\Delta {{\text{H}}_1}formula can be written as follows:
ΔH1=[1×ΔfH(CO2)+1×ΔfH(H2)][1×ΔfH(CO)+1×ΔfH(H2O)]\Delta {{\text{H}}_1} = \,\left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{C}}{{\text{O}}_{\text{2}}}{\text{)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}\,({{\text{H}}_{\text{2}}}{\text{)}}} \right] - \left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}\,({\text{CO)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}\,({{\text{H}}_{\text{2}}}{\text{O)}}} \right]
On substituting the values of ΔfH{\Delta _{\text{f}}}{\text{H}},
ΔfH=[1×ΔfH(393.5)+1×ΔfH(0.0)][1×ΔfH( - 110.5)+1×ΔfH( - 241.8)]{\Delta _{\text{f}}}{\text{H}} = \,\left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}( - 393.5{\text{)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}(0.0{\text{)}}} \right] - \left[ {1\, \times {\Delta _{\text{f}}}{\text{H}}({\text{ - 110}}{\text{.5)}} + \,1\,\, \times {\Delta _{\text{f}}}{\text{H}}({\text{ - 241}}{\text{.8)}}} \right]
ΔfH=393.5+352.3{\Delta _{\text{f}}}{\text{H}} = \, - 393.5\, + \,352.3
ΔfH=41.2kJ{\Delta _{\text{f}}}{\text{H}} = \, - 41.2\,\,{\text{kJ}}
Now substitute 41.2 - 41.2kJ forΔH1(T1)\Delta {{\text{H}}_1}\left( {{{\text{T}}_1}} \right), 0.0043kJ{\text{0}}{\text{.0043}}\,{\text{kJ}} for ΔCp\Delta {{\text{C}}_{\text{p}}}, 500K500\,{\text{K}}for T2{{\text{T}}_2}and 298K298\,{\text{K}}for T1{{\text{T}}_1}in equation(1)(1).
ΔH2(T2)=(41.2)+(70.0043)(500298)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \,\left( { - 41.2} \right)\, + \,\left( 7{{\text{0}}{\text{.0043}}} \right)\left( {500 - {\text{298}}} \right)
ΔH2(T2)=(41.2)+(0.8686)\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \,\left( { - 41.2} \right)\, + \,\left( {0.8686} \right)
ΔH2(T2)=40.3kJ\Delta {{\text{H}}_2}\left( {{{\text{T}}_2}} \right) = \, - 40.3\,{\text{kJ}}
So, the enthalpy change at 500K500\,{\text{K}}is 40.3kJ\, - 40.3\,{\text{kJ}}.

Therefore, option (C) ΔH=40.3kJ\Delta {\text{H}}\, = \, - 4{\text{0}}{\text{.3}}\,{\text{kJ}} is correct.therefore, option (C) ΔH=40.3kJ\Delta {\text{H}}\, = \, - 4{\text{0}}{\text{.3}}\,{\text{kJ}} is correct.

Note: To determine the change in molar heat capacity a balanced chemical equation is necessary. According to Kirchhoff's equation, heat capacity varies with temperature. On increasing the temperature heat capacity increases. The Heat capacity in terms of mole is an intensive property and it is independent of quantity of substance. It gives information on whether the work can be done or not by the system also.