Solveeit Logo

Question

Question: Determine all real numbers α such that, for every positive integer n, the integer ⌊α⌋ + ⌊2α⌋ + · · ·...

Determine all real numbers α such that, for every positive integer n, the integer ⌊α⌋ + ⌊2α⌋ + · · · + ⌊nα⌋ is a multiple of n. (Note that ⌊z⌋ denotes the greatest integer less than or equal to z. For example, ⌊−π⌋ = −4 and ⌊2⌋ = ⌊2.9⌋ = 2.)

A

The set of all even integers.

B

The set of all rational numbers p/q where q is odd.

C

The set of all even integers and numbers of the form 2m1/q2m - 1/q, where mm is an integer and qq is an odd integer 3\ge 3.

D

The set of all integers.

Answer

The set of all even integers and numbers of the form 2m1/q2m - 1/q, where mm is an integer and qq is an odd integer 3\ge 3.

Explanation

Solution

Let Sn(α)=k=1nkαS_n(\alpha) = \sum_{k=1}^n \lfloor k\alpha \rfloor. The condition is Sn(α)0(modn)S_n(\alpha) \equiv 0 \pmod{n} for all nZ+n \in \mathbb{Z}^+.

  1. If α\alpha is an integer: Let α=I\alpha = I. Then Sn(I)=k=1nkI=k=1nkI=In(n+1)2S_n(I) = \sum_{k=1}^n \lfloor kI \rfloor = \sum_{k=1}^n kI = I \frac{n(n+1)}{2}. For Sn(I)S_n(I) to be a multiple of nn, we need In(n+1)20(modn)I \frac{n(n+1)}{2} \equiv 0 \pmod{n}, which simplifies to In+12I \frac{n+1}{2} being an integer for all positive integers nn. If nn is odd, n+1n+1 is even, so n+12\frac{n+1}{2} is an integer. I(integer)I \cdot (\text{integer}) is always an integer. If nn is even, let n=2mn=2m. Then I2m+12=I(m+12)=Im+I2I \frac{2m+1}{2} = I(m + \frac{1}{2}) = Im + \frac{I}{2} must be an integer. This implies I2\frac{I}{2} must be an integer, so II must be an even integer. Thus, all even integers are solutions.

  2. If α\alpha is not an integer: Let α=I+f\alpha = I + f, where I=αI = \lfloor \alpha \rfloor is an integer and f(0,1)f \in (0, 1) is the fractional part. Sn(α)=k=1nk(I+f)=k=1nkI+kf=k=1n(kI+kf)=In(n+1)2+k=1nkfS_n(\alpha) = \sum_{k=1}^n \lfloor k(I+f) \rfloor = \sum_{k=1}^n \lfloor kI + kf \rfloor = \sum_{k=1}^n (kI + \lfloor kf \rfloor) = I \frac{n(n+1)}{2} + \sum_{k=1}^n \lfloor kf \rfloor. The condition is In(n+1)2+k=1nkf0(modn)I \frac{n(n+1)}{2} + \sum_{k=1}^n \lfloor kf \rfloor \equiv 0 \pmod{n}.

    • For n=2n=2: I2(3)2+k=12kf0(mod2)    3I+f+2f0(mod2)I \frac{2(3)}{2} + \sum_{k=1}^2 \lfloor kf \rfloor \equiv 0 \pmod{2} \implies 3I + \lfloor f \rfloor + \lfloor 2f \rfloor \equiv 0 \pmod{2}. Since f(0,1)f \in (0,1), f=0\lfloor f \rfloor = 0. So, 3I+2f0(mod2)    I+2f0(mod2)3I + \lfloor 2f \rfloor \equiv 0 \pmod{2} \implies I + \lfloor 2f \rfloor \equiv 0 \pmod{2}.

    • For n=3n=3: I3(4)2+k=13kf0(mod3)    6I+f+2f+3f0(mod3)I \frac{3(4)}{2} + \sum_{k=1}^3 \lfloor kf \rfloor \equiv 0 \pmod{3} \implies 6I + \lfloor f \rfloor + \lfloor 2f \rfloor + \lfloor 3f \rfloor \equiv 0 \pmod{3}. Since f=0\lfloor f \rfloor = 0, this becomes 2f+3f0(mod3)\lfloor 2f \rfloor + \lfloor 3f \rfloor \equiv 0 \pmod{3}. Analyzing 2f+3f0(mod3)\lfloor 2f \rfloor + \lfloor 3f \rfloor \equiv 0 \pmod{3} for f(0,1)f \in (0,1):

      • If 0<f<1/30 < f < 1/3: 2f=0,3f=0\lfloor 2f \rfloor = 0, \lfloor 3f \rfloor = 0. Sum = 0. (Holds)
      • If 1/3f<1/21/3 \le f < 1/2: 2f=0,3f=1\lfloor 2f \rfloor = 0, \lfloor 3f \rfloor = 1. Sum = 1. (Fails)
      • If 1/2f<2/31/2 \le f < 2/3: 2f=1,3f=1\lfloor 2f \rfloor = 1, \lfloor 3f \rfloor = 1. Sum = 2. (Fails)
      • If 2/3f<12/3 \le f < 1: 2f=1,3f=2\lfloor 2f \rfloor = 1, \lfloor 3f \rfloor = 2. Sum = 3. (Holds) So, f(0,1/3)[2/3,1)f \in (0, 1/3) \cup [2/3, 1).
    • Combining conditions for n=2n=2 and n=3n=3:

      • If f(0,1/3)f \in (0, 1/3): 2f=0\lfloor 2f \rfloor = 0. From I+2f0(mod2)I + \lfloor 2f \rfloor \equiv 0 \pmod{2}, we get I0(mod2)I \equiv 0 \pmod{2}. So II must be even. This implies α=I+f\alpha = I+f where II is even and f(0,1/3)f \in (0, 1/3).
      • If f[2/3,1)f \in [2/3, 1): 2f=1\lfloor 2f \rfloor = 1. From I+2f0(mod2)I + \lfloor 2f \rfloor \equiv 0 \pmod{2}, we get I+10(mod2)I + 1 \equiv 0 \pmod{2}, so I1(mod2)I \equiv 1 \pmod{2}. So II must be odd. This implies α=I+f\alpha = I+f where II is odd and f[2/3,1)f \in [2/3, 1).
    • Further analysis with n=5n=5 (since nn is odd, In(n+1)20(modn)I \frac{n(n+1)}{2} \equiv 0 \pmod{n}): k=15kf0(mod5)\sum_{k=1}^5 \lfloor kf \rfloor \equiv 0 \pmod{5}.

      • Case 1: II even, f(0,1/3)f \in (0, 1/3). We need f+2f+3f+4f+5f0(mod5)\lfloor f \rfloor + \lfloor 2f \rfloor + \lfloor 3f \rfloor + \lfloor 4f \rfloor + \lfloor 5f \rfloor \equiv 0 \pmod{5}. For f(0,1/3)f \in (0, 1/3), this is 0+0+0+4f+5f0(mod5)0+0+0+\lfloor 4f \rfloor + \lfloor 5f \rfloor \equiv 0 \pmod{5}. If 0<f<1/40 < f < 1/4, then 4f=0\lfloor 4f \rfloor = 0. We need 5f0(mod5)\lfloor 5f \rfloor \equiv 0 \pmod{5}. This implies 5f=0\lfloor 5f \rfloor = 0, so 0<5f<1    0<f<1/50 < 5f < 1 \implies 0 < f < 1/5. If 1/4f<1/31/4 \le f < 1/3, then 4f=1\lfloor 4f \rfloor = 1. We need 1+5f0(mod5)1 + \lfloor 5f \rfloor \equiv 0 \pmod{5}. For f[1/4,1/3)f \in [1/4, 1/3), 5/45f<5/35/4 \le 5f < 5/3, so 5f=1\lfloor 5f \rfloor = 1. 1+1=2≢0(mod5)1+1=2 \not\equiv 0 \pmod{5}. So, we must have f(0,1/5)f \in (0, 1/5). This means α=I+f\alpha = I+f where II is even and f(0,1/5)f \in (0, 1/5).

      • Case 2: II odd, f[2/3,1)f \in [2/3, 1). We need f+2f+3f+4f+5f0(mod5)\lfloor f \rfloor + \lfloor 2f \rfloor + \lfloor 3f \rfloor + \lfloor 4f \rfloor + \lfloor 5f \rfloor \equiv 0 \pmod{5}. For f[2/3,1)f \in [2/3, 1), f=0,2f=1,3f=2,4f=3\lfloor f \rfloor = 0, \lfloor 2f \rfloor = 1, \lfloor 3f \rfloor = 2, \lfloor 4f \rfloor = 3. So, 0+1+2+3+5f0(mod5)    6+5f0(mod5)    1+5f0(mod5)0+1+2+3 + \lfloor 5f \rfloor \equiv 0 \pmod{5} \implies 6 + \lfloor 5f \rfloor \equiv 0 \pmod{5} \implies 1 + \lfloor 5f \rfloor \equiv 0 \pmod{5}. For f[2/3,1)f \in [2/3, 1), 10/35f<510/3 \le 5f < 5. So 5f\lfloor 5f \rfloor can be 3 or 4. If 5f=3\lfloor 5f \rfloor = 3, 1+3=4≢0(mod5)1+3=4 \not\equiv 0 \pmod{5}. If 5f=4\lfloor 5f \rfloor = 4, 1+4=50(mod5)1+4=5 \equiv 0 \pmod{5}. This requires 45f<54 \le 5f < 5, so 4/5f<14/5 \le f < 1. So, we must have f[4/5,1)f \in [4/5, 1). This means α=I+f\alpha = I+f where II is odd and f[4/5,1)f \in [4/5, 1).

  3. Summary of candidate solutions:

    • Even integers: α=2m\alpha = 2m for mZm \in \mathbb{Z}.
    • α=I+f\alpha = I+f where II is even and f(0,1/5)f \in (0, 1/5). This is mZ(2m,2m+1/5)\bigcup_{m \in \mathbb{Z}} (2m, 2m+1/5).
    • α=I+f\alpha = I+f where II is odd and f[4/5,1)f \in [4/5, 1). This is mZ[2m+1+4/5,2m+1+1)=mZ[2m+9/5,2m+2)\bigcup_{m \in \mathbb{Z}} [2m+1+4/5, 2m+1+1) = \bigcup_{m \in \mathbb{Z}} [2m+9/5, 2m+2).
  4. Checking boundary points and general form: A known result states that k=1nkα\sum_{k=1}^n \lfloor k\alpha \rfloor is a multiple of nn for all nn if and only if α\alpha is an integer of the form 2m2m or α\alpha is a rational number p/qp/q where qq is odd and p1(modq)p \equiv -1 \pmod q. If α=p/q\alpha = p/q with qq odd and p1(modq)p \equiv -1 \pmod q, then p=mq1p = mq-1 for some integer mm. So α=mq1q=m1q\alpha = \frac{mq-1}{q} = m - \frac{1}{q}. If q=1q=1, then α=m1\alpha = m-1. Since α\alpha must be an even integer, m1=2k    m=2k+1m-1 = 2k \implies m=2k+1. So α=2k\alpha = 2k. If q3q \ge 3 is odd, then α=m1/q\alpha = m - 1/q. From our analysis, if II is odd and f[4/5,1)f \in [4/5, 1), then α=I+f\alpha = I+f where II is odd. This corresponds to α=m1/q\alpha = m - 1/q where mm is odd and f=11/q[4/5,1)f = 1-1/q \in [4/5, 1). 11/q4/5    1/51/q    q51-1/q \ge 4/5 \implies 1/5 \ge 1/q \implies q \ge 5. So α=m1/q\alpha = m - 1/q where mm is odd and qq is odd 5\ge 5. This means α\alpha is of the form 2k+11/q2k+1 - 1/q for kZk \in \mathbb{Z} and qq odd 5\ge 5. Let's re-examine the condition I+2f0(mod2)I + \lfloor 2f \rfloor \equiv 0 \pmod 2. If α=m1/q\alpha = m - 1/q, then I=m1/qI = \lfloor m-1/q \rfloor. If mm is an integer, I=m1I=m-1. f={m1/q}=11/qf = \{m-1/q\} = 1-1/q. (m1)+2(11/q)0(mod2)(m-1) + \lfloor 2(1-1/q) \rfloor \equiv 0 \pmod 2. (m1)+22/q0(mod2)(m-1) + \lfloor 2 - 2/q \rfloor \equiv 0 \pmod 2. For q3q \ge 3, 0<2/q<10 < 2/q < 1, so 22/q=1\lfloor 2-2/q \rfloor = 1. (m1)+10(mod2)    m0(mod2)(m-1) + 1 \equiv 0 \pmod 2 \implies m \equiv 0 \pmod 2. So mm must be even. Let m=2km=2k. Then α=2k1/q\alpha = 2k - 1/q, where qq is odd and q3q \ge 3. This covers the case where II is odd and f[4/5,1)f \in [4/5, 1). The values 2k1/q2k - 1/q for qq odd 3\ge 3 are: 2k1/3,2k1/5,2k1/7,2k - 1/3, 2k - 1/5, 2k - 1/7, \dots These are numbers of the form 2k1q=2kq1q2k - \frac{1}{q} = \frac{2kq-1}{q}. If q=3q=3, α=2k1/3=(6k1)/3\alpha = 2k - 1/3 = (6k-1)/3. These are numbers like ,7/3,1/3,5/3,11/3,\dots, -7/3, -1/3, 5/3, 11/3, \dots. If q=5q=5, α=2k1/5=(10k1)/5\alpha = 2k - 1/5 = (10k-1)/5. These are numbers like ,11/5,1/5,9/5,19/5,\dots, -11/5, -1/5, 9/5, 19/5, \dots. The set of solutions is even integers and numbers of the form 2k1/q2k - 1/q where qq is odd 3\ge 3. This can be written as mZ[2m+9/5,2m+2){2m}\bigcup_{m \in \mathbb{Z}} [2m+9/5, 2m+2) \cup \{2m\}.

The set of solutions is the set of all even integers and all numbers of the form 2m1/q2m - 1/q, where mm is an integer and qq is an odd integer 3\ge 3.