Solveeit Logo

Question

Question: Determinant \(\left| \begin{matrix} 1 & x & y \\ 2 & \sin x + 2x & \sin y + 2y \\ 3 & \cos x + 3x & ...

Determinant 1xy2sinx+2xsiny+2y3cosx+3xcosy+3y\left| \begin{matrix} 1 & x & y \\ 2 & \sin x + 2x & \sin y + 2y \\ 3 & \cos x + 3x & \cos y + 3y \end{matrix} \right| is equal to

A

sin (x – y)

B

cos (x – y)

C

cos (x + y)

D

xy sin (x – y)

Answer

sin (x – y)

Explanation

Solution

R2 → R2 – 2R1, R3 → R3 – 3R1

∆ = 1xy0sinxsiny0cosxcosy\left| \begin{matrix} 1 & x & y \\ 0 & \sin x & \sin y \\ 0 & \cos x & \cos y \end{matrix} \right| = sin x cos y – cos x sin y

= sin (x – y)