Solveeit Logo

Question

Question: Derive the value of sin 36...

Derive the value of sin 36

Answer

10254\frac{\sqrt{10 - 2\sqrt{5}}}{4}

Explanation

Solution

To derive the value of sin36\sin 36^\circ, we can follow these steps:

1. Set up the angle relationship: Let θ=36\theta = 36^\circ. Multiplying by 5, we get 5θ=1805\theta = 180^\circ. We can split 5θ5\theta into 2θ2\theta and 3θ3\theta: 2θ+3θ=1802\theta + 3\theta = 180^\circ Rearranging the terms, we get: 2θ=1803θ2\theta = 180^\circ - 3\theta

2. Apply the sine function to both sides: Taking the sine of both sides of the equation 2θ=1803θ2\theta = 180^\circ - 3\theta: sin(2θ)=sin(1803θ)\sin(2\theta) = \sin(180^\circ - 3\theta) Using the identity sin(180x)=sinx\sin(180^\circ - x) = \sin x: sin(2θ)=sin(3θ)\sin(2\theta) = \sin(3\theta)

3. Expand using double and triple angle formulas: Recall the formulas: sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin\theta \cos\theta sin(3θ)=3sinθ4sin3θ\sin(3\theta) = 3 \sin\theta - 4 \sin^3\theta Substitute these into the equation: 2sinθcosθ=3sinθ4sin3θ2 \sin\theta \cos\theta = 3 \sin\theta - 4 \sin^3\theta

4. Solve for cosθ\cos\theta: Since θ=36\theta = 36^\circ, sinθ=sin360\sin\theta = \sin 36^\circ \neq 0. Therefore, we can divide both sides by sinθ\sin\theta: 2cosθ=34sin2θ2 \cos\theta = 3 - 4 \sin^2\theta Now, use the identity sin2θ=1cos2θ\sin^2\theta = 1 - \cos^2\theta: 2cosθ=34(1cos2θ)2 \cos\theta = 3 - 4 (1 - \cos^2\theta) 2cosθ=34+4cos2θ2 \cos\theta = 3 - 4 + 4 \cos^2\theta 2cosθ=1+4cos2θ2 \cos\theta = -1 + 4 \cos^2\theta Rearrange the terms to form a quadratic equation in cosθ\cos\theta: 4cos2θ2cosθ1=04 \cos^2\theta - 2 \cos\theta - 1 = 0

Let x=cosθx = \cos\theta. The equation becomes 4x22x1=04x^2 - 2x - 1 = 0. Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=(2)±(2)24(4)(1)2(4)x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(4)(-1)}}{2(4)} x=2±4+168x = \frac{2 \pm \sqrt{4 + 16}}{8} x=2±208x = \frac{2 \pm \sqrt{20}}{8} x=2±258x = \frac{2 \pm 2\sqrt{5}}{8} x=1±54x = \frac{1 \pm \sqrt{5}}{4}

Since θ=36\theta = 36^\circ is in the first quadrant, cos36\cos 36^\circ must be positive. 52.236\sqrt{5} \approx 2.236. 1+541+2.2364=3.23640.809\frac{1 + \sqrt{5}}{4} \approx \frac{1 + 2.236}{4} = \frac{3.236}{4} \approx 0.809 (positive) 15412.2364=1.23640.309\frac{1 - \sqrt{5}}{4} \approx \frac{1 - 2.236}{4} = \frac{-1.236}{4} \approx -0.309 (negative) Therefore, we choose the positive value: cos36=1+54\cos 36^\circ = \frac{1 + \sqrt{5}}{4}

5. Calculate sin36\sin 36^\circ: We know that sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1. sin236=1cos236\sin^2 36^\circ = 1 - \cos^2 36^\circ sin236=1(1+54)2\sin^2 36^\circ = 1 - \left(\frac{1 + \sqrt{5}}{4}\right)^2 sin236=1(1)2+(5)2+2(1)(5)16\sin^2 36^\circ = 1 - \frac{(1)^2 + (\sqrt{5})^2 + 2(1)(\sqrt{5})}{16} sin236=11+5+2516\sin^2 36^\circ = 1 - \frac{1 + 5 + 2\sqrt{5}}{16} sin236=16+2516\sin^2 36^\circ = 1 - \frac{6 + 2\sqrt{5}}{16} To combine the terms, find a common denominator: sin236=16166+2516\sin^2 36^\circ = \frac{16}{16} - \frac{6 + 2\sqrt{5}}{16} sin236=16(6+25)16\sin^2 36^\circ = \frac{16 - (6 + 2\sqrt{5})}{16} sin236=1662516\sin^2 36^\circ = \frac{16 - 6 - 2\sqrt{5}}{16} sin236=102516\sin^2 36^\circ = \frac{10 - 2\sqrt{5}}{16}

Since 3636^\circ is in the first quadrant, sin36\sin 36^\circ must be positive. sin36=102516\sin 36^\circ = \sqrt{\frac{10 - 2\sqrt{5}}{16}} sin36=10254\sin 36^\circ = \frac{\sqrt{10 - 2\sqrt{5}}}{4}