Question
Question: Derive the value of sin 36...
Derive the value of sin 36
410−25
Solution
To derive the value of sin36∘, we can follow these steps:
1. Set up the angle relationship: Let θ=36∘. Multiplying by 5, we get 5θ=180∘. We can split 5θ into 2θ and 3θ: 2θ+3θ=180∘ Rearranging the terms, we get: 2θ=180∘−3θ
2. Apply the sine function to both sides: Taking the sine of both sides of the equation 2θ=180∘−3θ: sin(2θ)=sin(180∘−3θ) Using the identity sin(180∘−x)=sinx: sin(2θ)=sin(3θ)
3. Expand using double and triple angle formulas: Recall the formulas: sin(2θ)=2sinθcosθ sin(3θ)=3sinθ−4sin3θ Substitute these into the equation: 2sinθcosθ=3sinθ−4sin3θ
4. Solve for cosθ: Since θ=36∘, sinθ=sin36∘=0. Therefore, we can divide both sides by sinθ: 2cosθ=3−4sin2θ Now, use the identity sin2θ=1−cos2θ: 2cosθ=3−4(1−cos2θ) 2cosθ=3−4+4cos2θ 2cosθ=−1+4cos2θ Rearrange the terms to form a quadratic equation in cosθ: 4cos2θ−2cosθ−1=0
Let x=cosθ. The equation becomes 4x2−2x−1=0. Using the quadratic formula x=2a−b±b2−4ac: x=2(4)−(−2)±(−2)2−4(4)(−1) x=82±4+16 x=82±20 x=82±25 x=41±5
Since θ=36∘ is in the first quadrant, cos36∘ must be positive. 5≈2.236. 41+5≈41+2.236=43.236≈0.809 (positive) 41−5≈41−2.236=4−1.236≈−0.309 (negative) Therefore, we choose the positive value: cos36∘=41+5
5. Calculate sin36∘: We know that sin2θ+cos2θ=1. sin236∘=1−cos236∘ sin236∘=1−(41+5)2 sin236∘=1−16(1)2+(5)2+2(1)(5) sin236∘=1−161+5+25 sin236∘=1−166+25 To combine the terms, find a common denominator: sin236∘=1616−166+25 sin236∘=1616−(6+25) sin236∘=1616−6−25 sin236∘=1610−25
Since 36∘ is in the first quadrant, sin36∘ must be positive. sin36∘=1610−25 sin36∘=410−25