Solveeit Logo

Question

Question: Derive the relationship between relative lowering of vapour pressure and molar mass of non-volatile ...

Derive the relationship between relative lowering of vapour pressure and molar mass of non-volatile solute?

Explanation

Solution

Relative lowering of vapour pressure is the ratio of the vapour pressure lowering of the solvent from solution to the vapour pressure of the pure solvent. This lowering in vapour pressure has occurred when a solute is added to the solvent.

Complete step by step answer:
The expression for the relative lowering of vapour pressure can be written as;
ΔPP=PPP\dfrac{\Delta P}{{{P}^{{}^\circ }}}=\dfrac{{{P}^{{}^\circ }}-P}{{{P}^{{}^\circ }}}
ΔP=\Delta P = Lowering in vapour pressure
P={{P}^{{}^\circ }}=Vapour pressure of the pure solvent
P=P= Vapour pressure of the solvent from the solution
Also, we have known that the relative lowering of vapour pressure is equal to the mole fraction of the solute(x2{{x}_{2}}). Hence we can be written as;
ΔPP=PPP=x2\Rightarrow \dfrac{\Delta P}{{{P}^{{}^\circ }}}=\dfrac{{{P}^{{}^\circ }}-P}{{{P}^{{}^\circ }}}={{x}_{2}}
Hence, the mole fraction can be written as;
x2=n2n2+n2=W2M2W2M2+W1M1\Rightarrow {{x}_{2}}=\dfrac{{{n}_{2}}}{{{n}_{2}}+{{n}_{2}}}=\dfrac{\dfrac{{{W}_{2}}}{{{M}_{2}}}}{\dfrac{{{W}_{2}}}{{{M}_{2}}}+\dfrac{{{W}_{1}}}{{{M}_{1}}}}
n1{{n}_{1}} and n2{{n}_{2}} are the number of moles of solute and solvent, respectively.
W1{{W}_{1}} and M1{{M}_{1}} are the mass and molar mass of the solvent, respectively.
W2{{W}_{2}} and M2{{M}_{2}} are the mass and molar mass of the solute, respectively.

We have known that for dilute solutions, n1>>n2{{n}_{1}}>>{{n}_{2}}
Hence, n1{{n}_{1}} is too small. So we can neglect the value of n1{{n}_{1}} when compared with n2{{n}_{2}}
Hence , the equation for the mole fraction of solute becomes;
x2=n2n2+=W2M2W1M1\Rightarrow {{x}_{2}}=\dfrac{{{n}_{2}}}{{{n}_{2}}+}=\dfrac{\dfrac{{{W}_{2}}}{{{M}_{2}}}}{\dfrac{{{W}_{1}}}{{{M}_{1}}}}
So, finally we got the equation for the mole fraction of solute in terms of molar mass of solute and solvent respectively. Also, we have known that the mole fraction of solute is equal to the relative lowering of vapour pressure. So we can equate both equations;
ΔPP=PPP=W2M2W1M1\Rightarrow \dfrac{\Delta P}{{{P}^{{}^\circ }}}=\dfrac{{{P}^{{}^\circ }}-P}{{{P}^{{}^\circ }}}=\dfrac{\dfrac{{{W}_{2}}}{{{M}_{2}}}}{\dfrac{{{W}_{1}}}{{{M}_{1}}}}
Hence, it derived the relationship between the relative lowering of vapour pressure and molar mass of the non-volatile solute.

Note: Relative lowering of vapour pressure is colligative property (which depends upon the number of particles only. Other than this, there are another three types of colligative properties such as boiling point elevation, depression in freezing point, and osmotic pressure.